Emiya 家今天的饭C++
题目:
样例解释:
【样例 1 解释】
由于在这个样例中,对于每组 i,j,Emiya 都最多只会做一道菜,因此我们直接通过给出烹饪方法、主要食材的编号来描述一道菜。
符合要求的方案包括:
- 做一道用烹饪方法 1、主要食材 1 的菜和一道用烹饪方法 2、主要食材 2 的菜
- 做一道用烹饪方法 1、主要食材 1 的菜和一道用烹饪方法 2、主要食材 3 的菜
- 做一道用烹饪方法 1、主要食材 3 的菜和一道用烹饪方法 2、主要食材 2 的菜
因此输出结果为 3mod998,244,353=3。 需要注意的是,所有只包含一道菜的方案都是不符合要求的,因为唯一的主要食材在超过一半的菜中出现,这不满足 Yazid 的要求。
【样例 2 解释】
Emiya 必须至少做 2 道菜。
做 2 道菜的符合要求的方案数为 100。
做 3 道菜的符合要求的方案数为 90。
因此符合要求的方案数为 100 + 90 = 190。
思路:
首先考虑列的限制,发现若有不合法的列,则必然有且只有一列是不合法的:因为不可能有不同的两列数量都超过总数的一半。
于是发现列的限制容易容斥计算:每行选不超过一个的方案数 - 每行选不超过一个,且某一列选了超过一半的方案数。
那么考虑枚举不合法的一列。假设我们已经枚举了不合法的列为colcol,接下来会发现我们只关心一个数的位置是否在当前列;如果属于在其他列的情况,那么它具体在哪一列对当前列的合法性并无影响,我们并不需要考虑。
接下来设计状态。fi,j,kfi,j,k表示对于colcol这一列,前ii行在colcol列中选了jj个,在其他列中选了kk个,那么令sisi为第ii行的总和,则有转移:
fi,j,k=fi−1,j,k + ai,col∗fi−1,j−1,k + (si−ai,col)∗fi−1,j,k−1fi,j,k=fi−1,j,k + ai,col∗fi−1,j−1,k + (si−ai,col)∗fi−1,j,k−1状态数O(n3)O(n3),转移O(1)O(1),算上枚举colcol,这一步复杂度是O(mn3)O(mn3)的。统计如下和式的值并对每一列求和即可得到不合法的方案数:
∑j>kfn,j,kj>k∑fn,j,k接下来考虑计算总方案数:和之前相似,只需设gi,jgi,j为前ii行共选了jj个数的方案数,则有转移:
gi,j=gi−1,j + si∗gi−1,j−1gi,j=gi−1,j + si∗gi−1,j−1那么∑i=1ngn,ii=1∑ngn,i就是总方案数, 这一步是O(n2)O(n2)的。所以现在可以在O(mn3)O(mn3)的总复杂度内完成这题,获得84分。
考虑进一步优化,剪去无用状态:注意到在不合法情况的计算过程中,也就是fi,j,kfi,j,k的转移过程中,我们实际上并不关心j,kj,k的具体数值,而只关心相对的大小关系;所以我们可以将状态变为fi,jfi,j,表示前ii行,当前列的数比其他列的数多了jj个,则有转移:
fi,j=fi−1,j + ai,col∗fi−1,j−1 + (si−ai,col)∗fi−1,j+1fi,j=fi−1,j + ai,col∗fi−1,j−1 + (si−ai,col)∗fi−1,j+1转移仍然是O(1)O(1)的,但总复杂度降为O(mn2)O(mn2),可以通过此题。
代码:
1.
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;typedef long long ll;
const int Maxn = 100;
const int Maxm = 2000;
const int Mod = 998244353;int N, M;
int A[Maxn + 5][Maxm + 5];
int sum[Maxn + 5];ll f[Maxn + 5][Maxn * 2 + 5];
ll Solve(int typ) {for(int i = 0; i <= N; i++)for(int j = 0; j <= N * 2; j++)f[i][j] = 0;f[0][N] = 1;for(register int i = 0; i < N; i++)for(register int j = 0; j <= N * 2; j++) {if(j) f[i + 1][j - 1] = (f[i + 1][j - 1] + f[i][j]* (sum[i + 1] - A[i + 1][typ]) % Mod) % Mod;f[i + 1][j] = (f[i + 1][j] + f[i][j]) % Mod;f[i + 1][j + 1] = (f[i + 1][j + 1] + f[i][j]* A[i + 1][typ] % Mod) % Mod;}ll ret = 0;for(int i = N + 1; i <= N * 2; i++)ret = (ret + f[N][i]) % Mod;return ret;
}int main() {
#ifdef LOACLfreopen("in.txt", "r", stdin);freopen("out.txt", "w", stdout);
#endifscanf("%d %d", &N, &M);for(int i = 1; i <= N; i++)for(int j = 1; j <= M; j++)scanf("%d", &A[i][j]);ll ans = 1;for(int i = 1; i <= N; i++) {for(int j = 1; j <= M; j++)sum[i] = (sum[i] + A[i][j]) % Mod;ans = ans * (sum[i] + 1) % Mod;}ans = (ans - 1 + Mod) % Mod;for(register int i = 1; i <= M; i++)ans = (ans - Solve(i) + Mod) % Mod;printf("%lld\n", ans);return 0;
}
2.
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#define mod 998244353using namespace std;
typedef long long ll;
const int MAXN = 105, MAXM = 2005;
int n,m,a[MAXN][MAXM],sum[MAXN][MAXM];
ll f[MAXN][MAXN*2],g[MAXN][MAXN];int main()
{cin >> n >> m;for(int i = 1; i<=n; i++)for(int j = 1; j<=m; j++){scanf("%d",&a[i][j]);sum[i][0] = (sum[i][0]+a[i][j])%mod;}for(int i = 1; i<=n; i++)for(int j = 1; j<=m; j++)sum[i][j] = (sum[i][0]-a[i][j]+mod)%mod;ll ans = 0;for(int col = 1; col<=m; col++){memset(f,0,sizeof(f));f[0][n] = 1;for(int i = 1; i<=n; i++)for(int j = n-i; j<=n+i; j++) f[i][j] = (f[i-1][j]+f[i-1][j-1]*a[i][col]%mod+f[i-1][j+1]*sum[i][col]%mod)%mod;for(int j = 1; j<=n; j++)ans = (ans+f[n][n+j])%mod;}g[0][0] = 1;for(int i = 1; i<=n; i++)for(int j = 0; j<=n; j++) g[i][j] = (g[i-1][j]+(j>0?g[i-1][j-1]*sum[i][0]%mod:0))%mod;for(int j = 1; j<=n; j++)ans = (ans-g[n][j]+mod)%mod; cout << ans*(mod-1)%mod << endl;return 0;
}
相关文章:

Emiya 家今天的饭C++
题目: 样例解释: 【样例 1 解释】 由于在这个样例中,对于每组 i,j,Emiya 都最多只会做一道菜,因此我们直接通过给出烹饪方法、主要食材的编号来描述一道菜。 符合要求的方案包括: 做一道用烹饪方法 1、主要…...

Mybatis缓存机制(图文并茂!)
目录 一级缓存 需求我们在一个测试中通过ID两次查询Monster表中的信息。 二级缓存 案例分许(和上述一样的需求) EhCache第三方缓存 在了解缓存机制之前,我们要先了解什么是缓存: 缓存是一种高速存储器,用于暂时存储访问频繁的数据&…...
Git 工作区、暂存区和版本库
Git 工作区、暂存区和版本库 Git 是一个强大的版本控制系统,它帮助开发者管理代码历史,协作开发,以及跟踪和合并更改。为了更好地理解 Git 的工作流程,我们需要了解 Git 中的三个核心概念:工作区(Workspac…...
SSH 远程连接到 Linux 服务器上的 SQLite
通过 SSH 远程连接到 Linux 服务器上的 SQLite 数据库文件的流程,可以分为以下几个步骤: 通过 SSH 连接到远程 Linux 服务器。在远程服务器上执行 SQLite 命令行工具,操作数据库文件。在本地使用工具,通过 SSH 隧道间接访问远程的…...
使用ElasticSearch-dump工具进行ES数据迁移、备份
elasticsearch-dump基本使用 该工具基于第三方Elasticdump工具来实现,仓库地址:https://github.com/elasticsearch-dump/elasticsearch-dump/tree/master,用于更加快捷方便的将Elasticsearch不同集群的数据进行索引备份和还原。 一、安装 …...

SpringMVC源码-SpringMVC源码请求执行流程及重点方法doDispatch讲解
一、开始请求 在浏览器访问http://localhost:8080/spring_mymvc/userlist这个接口,是个get请求。 FrameworkServlet类的service方法会被请求到: 调用路径如下: service:945, FrameworkServlet (org.springframework.web.servlet) service:764, HttpSer…...

《深度学习》OpenCV 指纹验证、识别
目录 一、指纹验证 1、什么是指纹验证 2、步骤 1)图像采集 2)图像预处理 3)特征提取 4)特征匹配 5)相似度比较 6)结果输出 二、案例实现 1、完整代码 2、实现结果 调试模式: 三、…...

爬虫入门之爬虫原理以及请求响应
爬虫入门之爬虫原理以及请求响应 爬虫需要用到的库, 叫requests. 在导入requests库之前, 需要安装它, 打开cmd: 输入pip install 库名 pip install requests后面出现successful或requirement already就说明已经下载成功了!!! 下载出现的问题: 1.有报错或者是下载慢 修改镜像…...

CTF ciscn_2019_web_northern_china_day1_web1复现
ciscn_2019_web_northern_china_day1_web1 复现,环境源于CTFTraining 分析 拿到题目扫描,发现没有什么有用资产 扫描过程中注册账号登录,发现上传入口 上传文件,发现下载删除行为,寻找功能点,发现不能访问…...
docker命令汇总
Docker 是一个开源的应用容器引擎,它允许开发者打包应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化。容器是完全使用沙箱机制,相互之间不会有任何接口。 以下是一些常用的 Docker 命令…...
云计算在现代企业中的应用与优势
云计算在现代企业中的应用与优势 随着信息技术的飞速发展,云计算已经成为现代企业不可或缺的一部分。作为一种创新的计算模式,云计算为企业提供了前所未有的灵活性和可扩展性,极大地推动了企业的数字化转型。 一、云计算的基本概念 云计算…...

Android平台GB28181实时回传流程和技术实现
规范解读 GB28181 中的 “INVITE” 是会话初始协议(SIP)中的一种请求方法,主要用于邀请一个或多个参与者加入特定的会话。在 GB28181 标准中,“INVITE” 请求通常用于发起媒体流的传输请求。当一个设备想要接收来自另一个设备的媒…...

Text-to-SQL方法研究
有关Text-to-SQL实现细节,可以查阅我的另一篇文章text-to-sql将自然语言转换为数据库查询语句 1、面临的挑战 自然语言问题往往包含复杂的语言结构,如嵌套语句、倒装句和省略等,很难准确映射到SQL查询上。此外,自然语言本身就存在歧义,一个问题可能有多种解读。消除…...
【Router】路由功能之MAC地址过滤(MAC Filter)功能介绍及实现
MAC地址过滤(MAC Filter) MAC 地址过滤是一种网络安全技术,通过在网络设备(如路由器)上设置规则,允许或阻止特定 MAC 地址的设备连接到网络。其主要作用是增强网络的安全性,防止未经授权的设备接入网络。 MAC Filter工作原理 MAC 地址过滤的工作原理是根据设备…...
Flink 本地 idea 调试开启 WebUI
Flink 本地 idea 调试开启 WebUI Maven 引用相关的包配置端口使用本地带UI环境启动 // maven 导入<!-- flink运行时的webUI --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-runtime-web</artifactId><version…...
如何识别IP地址是独享的还是共享的
在网络环境中,IP地址的分配和使用方式直接影响到用户的在线隐私和访问安全。选择独享IP还是共享IP取决于用户的具体需求,理解这两种IP地址的差异及其特点至关重要。本文将探讨如何区分独享IP和共享IP,以及各自的优缺点。 1. 什么是独享IP与共…...
X-Spreadsheet使用教程:打造你的Web端电子表格应用
在Web开发中,经常需要处理数据表格的展示与编辑,而X-Spreadsheet作为一款轻量级、功能强大的JavaScript电子表格库,为开发者提供了一个便捷的解决方案。本文将详细介绍如何使用X-Spreadsheet在Web项目中创建和配置电子表格,让你的…...

订餐点餐|订餐系统基于java的订餐点餐系统小程序设计与实现(源码+数据库+文档)
订餐点餐系统小程序 目录 基于java的订餐点餐系统小程序设计与实现 一、前言 二、系统功能设计 三、系统实现 四、数据库设计 1、实体ER图 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取: 博主介绍:✌️大厂码农|毕设布…...

Tkinter制作登录界面以及登陆后页面切换(一)
Tkinter制作登录界面以及登陆后页面切换(一) 前言序言1. 由来2. 思路3. 项目结构描述4. 项目实战1. 登录界面实现(代码)2. 首页界面实现(代码)3. 打包build.py(与main.py同级目录)4.…...

Colorful/七彩虹将星X17 AT 23 英特尔13代处理器 Win11原厂OEM系统 带COLORFUL一键还原
安装完毕自带原厂驱动和预装软件以及一键恢复功能,自动重建COLORFUL RECOVERY功能,恢复到新机开箱状态。 【格式】:iso 【系统类型】:Windows11 原厂系统下载网址:http://www.bioxt.cn 注意:安装系统会…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
STM32+rt-thread判断是否联网
一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...

九天毕昇深度学习平台 | 如何安装库?
pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...

【Linux】自动化构建-Make/Makefile
前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具:make/makfile 1.背景 在一个工程中源文件不计其数,其按类型、功能、模块分别放在若干个目录中,mak…...