当前位置: 首页 > news >正文

算法训练营打卡Day18

目录

  1. 二叉搜索树的最小绝对差
  2. 二叉搜索树中的众数
  3. 二叉树的最近公共祖先
  4. 额外练手题目

题目1、二叉搜索树的最小绝对差

力扣题目链接(opens new window)

给你一棵所有节点为非负值的二叉搜索树,请你计算树中任意两节点的差的绝对值的最小值。

示例:

530二叉搜索树的最小绝对差

思路

遇到在二叉搜索树上求什么最值或者差值之类的问题,我们可以尝试把它想成在一个有序数组上求解。本题使用可以递归的方法,把二叉搜索树转换成有序数组,然后遍历一遍数组,从而求解最小绝对值差。

代码实现

python

class Solution:def __init__(self):self.vec = []def traversal(self, root):if root is None:returnself.traversal(root.left)  #左self.vec.append(root.val)  #中  将二叉搜索树转换为有序数组self.traversal(root.right) #右def getMinimumDifference(self, root):self.vec = []              #清空数组self.traversal(root)if len(self.vec) < 2:      #遇到节点数少于2的二叉树return 0result = float('inf')for i in range(1, len(self.vec)):# 统计有序数组的最小差值result = min(result, self.vec[i] - self.vec[i - 1])return result

C++

class Solution {
private:
vector<int> vec;
void traversal(TreeNode* root) {if (root == NULL) return;traversal(root->left);vec.push_back(root->val); // 将二叉搜索树转换为有序数组traversal(root->right);
}
public:int getMinimumDifference(TreeNode* root) {vec.clear();traversal(root);if (vec.size() < 2) return 0;int result = INT_MAX;for (int i = 1; i < vec.size(); i++) { // 统计有序数组的最小差值result = min(result, vec[i] - vec[i-1]);}return result;}
};

 另附超快运行解法(来自leetcode)

class Solution {
TreeNode* pre = nullptr;
int res = INT_MAX;
public:int getMinimumDifference(TreeNode* root) {if(root == nullptr) return 0;getMinimumDifference(root->left);if(pre == nullptr) pre = root;else {res = min(res, root->val - pre->val); pre = root;}getMinimumDifference(root->right);return res;}
};

题目2、二叉搜索树中的众数

力扣题目链接(opens new window)

给定一个有相同值的二叉搜索树(BST),找出 BST 中的所有众数(出现频率最高的元素)。

假定 BST 有如下定义:

  • 结点左子树中所含结点的值小于等于当前结点的值
  • 结点右子树中所含结点的值大于等于当前结点的值
  • 左子树和右子树都是二叉搜索树

例如:

给定 BST [1,null,2,2],

501. 二叉搜索树中的众数

返回[2].

思路

因为本题给定的二叉树是二叉搜索树,所以二叉树的中序遍历就是有序的,遍历有序数组的元素出现频率,从头遍历,那么一定是相邻两个元素作比较,然后就把出现频率最高的元素输出就可以了。我们创建一个指针指向前一个节点,这样每次当前节点才能和前一个节点作比较。而且初始化的时候前一个节点为NULL,这样当前一个节点为NULL时候,我们就知道这是比较的第一个元素。

如果 频率count 等于 maxCount(最大频率),当然要把这个元素加入到结果集中,频率大于最大频率的时候,不仅要更新最大频率,而且要清空结果集,因为结果集之前的元素都失效了。

代码实现

C++

class Solution {
private:int maxCount = 0; // 最大频率int count = 0; // 统计频率TreeNode* pre = NULL;vector<int> result;void searchBST(TreeNode* cur) {if (cur == NULL) return ;searchBST(cur->left);       // 左// 中if (pre == NULL) { // 第一个节点count = 1;} else if (pre->val == cur->val) { // 与前一个节点数值相同count++;} else { // 与前一个节点数值不同count = 1;}pre = cur; // 更新上一个节点if (count == maxCount) { // 如果和最大值相同,放进result中result.push_back(cur->val);}if (count > maxCount) { // 如果计数大于最大值频率maxCount = count;   // 更新最大频率result.clear();     // 很关键的一步,不要忘记清空result,之前result里的元素都失效了result.push_back(cur->val);}searchBST(cur->right);      // 右return ;}public:vector<int> findMode(TreeNode* root) {count = 0;maxCount = 0;pre = NULL; // 记录前一个节点result.clear();searchBST(root);return result;}
};

题目3、 二叉树的最近公共祖先

力扣题目链接(opens new window)

给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

例如,给定如下二叉树:  root = [3,5,1,6,2,0,8,null,null,7,4]

236. 二叉树的最近公共祖先

示例 1: 输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1 输出: 3 解释: 节点 5 和节点 1 的最近公共祖先是节点 3。

示例 2: 输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4 输出: 5 解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身。

思路

要想找到公共祖先,我们如果能自下而上地查找节点就好了,于是我们自然地想到回溯的思路,二叉树回溯的过程就是从下到上的。后序遍历(左右中)就是天然的回溯过程,可以根据左右子树的返回值,来处理中节点的逻辑。接下来我们还需要判断一个节点是节点q和节点p的公共祖先,在处理递归的逻辑上有很多细节,包括是否要处理返回值以及如何处理返回值,是否要搜索整棵二叉树等。

代码实现

C++

class Solution {
public:TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {if (root == q || root == p || root == NULL) return root;TreeNode* left = lowestCommonAncestor(root->left, p, q);TreeNode* right = lowestCommonAncestor(root->right, p, q);if (left != NULL && right != NULL) return root;if (left == NULL && right != NULL) return right;else if (left != NULL && right == NULL) return left;else  { //  (left == NULL && right == NULL)return NULL;}}
};

 可以参考更优的题解(来自leetcode),这里不作注解

class Solution {
public:TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {if (root == p || root == q || root == nullptr) {return root;}TreeNode* l = lowestCommonAncestor(root->left, p, q);TreeNode* r = lowestCommonAncestor(root->right, p, q);if (l != nullptr and r != nullptr) {return root;}if (l != nullptr) {return l;}return r;}
};

 9月29日力扣每日一题

 思路

对于在第k个人前的前k-1个人,如果这前k-1个人中有需要票数比第k个人的需要票数少的人,直接往count += tickets[i],否则加上第k个人的票数即可,对于第k个人后面的人,按相同思路再累加给count即可。

class Solution {
public:int timeRequiredToBuy(vector<int>& tickets, int k) {int count = 0; //用于记录时间int n = tickets.size();for (int i = 0; i < n; i++){if (i <= k){count += min(tickets[i], tickets[k]);}else{count += min(tickets[i], tickets[k] - 1);}}return count;}
};

相关文章:

算法训练营打卡Day18

目录 二叉搜索树的最小绝对差二叉搜索树中的众数二叉树的最近公共祖先额外练手题目 题目1、二叉搜索树的最小绝对差 力扣题目链接(opens new window) 给你一棵所有节点为非负值的二叉搜索树&#xff0c;请你计算树中任意两节点的差的绝对值的最小值。 示例&#xff1a; 思…...

【leetcode】169.多数元素

boyer-moore算法最简单理解方法&#xff1a; 假设你在投票选人 如果你和候选人&#xff08;利益&#xff09;相同&#xff0c;你就会给他投一票&#xff08;count1&#xff09;&#xff0c;如果不同&#xff0c;你就会踩他一下&#xff08;count-1&#xff09;当候选人票数为0&…...

MyBatis<foreach>标签的用法与实践

foreach标签简介 实践 demo1 简单的一个批量更新&#xff0c;这里传入了一个List类型的集合作为参数&#xff0c;拼接到 in 的后面 &#xff0c;来实现一个简单的批量更新 <update id"updateVislxble" parameterType"java.util.List">update model…...

R语言Shiny包新手教程

R语言Shiny包新手教程 1. 简介 Shiny 是一个 R 包&#xff0c;用于创建交互式网页应用。它非常适合展示数据分析结果和可视化效果。 2. 环境准备 安装R和RStudio 确保你的计算机上安装了 R 和 RStudio。你可以从 CRAN 下载 R&#xff0c;或从 RStudio 官网 下载 RStudio。…...

[大象快讯]:PostgreSQL 17 重磅发布!

家人们&#xff0c;数据库界的大新闻来了&#xff01;&#x1f4e3; PostgreSQL 17 正式发布&#xff0c;全球开发者社区的心血结晶&#xff0c;带来了一系列令人兴奋的新特性和性能提升。 发版通告全文如下 PostgreSQL 全球开发小组今天&#xff08;2024-09-26&#xff09;宣布…...

CHI trans--Home节点发起的操作

总目录&#xff1a; CHI协议简读汇总-CSDN博客https://blog.csdn.net/zhangshangjie1/article/details/131877216 Home节点能够发起的操作&#xff0c;包含如下几类&#xff1a; Home to Subordinate Read transactionsHome to Subordinate Write transactionsHome to Subor…...

Rust和Go谁会更胜一筹

在国内&#xff0c;我认为Go语言会成为未来的主流&#xff0c;因为国内程序员号称码农&#xff0c;比较适合搬砖&#xff0c;而Rust对心智要求太高了&#xff0c;不适合搬砖。 就个人经验来看&#xff0c;Go语言简单&#xff0c;下限低&#xff0c;没有什么心智成本&#xff0c…...

记HttpURLConnection下载图片

目录 一、示例代码1 二、示例代码2 一、示例代码1 import java.io.*; import java.net.HttpURLConnection; import java.net.URL;public class Test {/*** 下载图片*/public void getNetImg() {InputStream inStream null;FileOutputStream fOutStream null;try {// URL 统…...

物联网实训室建设的必要性

物联网实训室建设的必要性 一、物联网发展的背景 物联网&#xff08;IoT&#xff09;是指通过信息传感设备&#xff0c;按照约定的协议&#xff0c;将任何物品与互联网连接起来&#xff0c;进行信息交换和通信&#xff0c;以实现智能化识别、定位、跟踪、监控和管理的一种网络…...

初识C语言(四)

目录 前言 十一、常见关键字&#xff08;补充&#xff09; &#xff08;1&#xff09;register —寄存器 &#xff08;2&#xff09;typedef类型重命名 &#xff08;3&#xff09;static静态的 1、修饰局部变量 2、修饰全局变量 3、修饰函数 十二、#define定义常量和宏…...

产品架构图:从概念到实践

在当今快速发展的科技时代&#xff0c;产品架构图已成为产品经理和设计师不可或缺的工具。它不仅帮助我们理解复杂的产品体系&#xff0c;还能指导我们进行有效的产品设计和开发。本文将深入探讨产品架构图的概念、重要性以及绘制方法。 整个内容框架分为三个部分&#xff0c;…...

smartctl 命令:查看硬盘健康状态

一、命令简介 ​smartctl​ 命令用于获取硬盘的 SMART 信息。 介绍硬盘SMART 硬盘的 SMART (Self-Monitoring, Analysis, and Reporting Technology) 技术用于监控硬盘的健康状态&#xff0c;并能提供一些潜在故障的预警信息。通过查看 SMART 数据&#xff0c;用户可以了解硬…...

BBR 为什么没有替代 CUBIC 成为 Linux 内核缺省算法

自 2017 年底 bbr 发布以来&#xff0c;随着媒体的宣讲&#xff0c;各大站点陆续部署 bbr&#xff0c;很多网友不禁问&#xff0c;bbr 这么好&#xff0c;为什么不替代 cubic 成为 linux 的缺省算法。仅仅因为它尚未标准化&#xff1f;这么好的算法又为什么没被标准化&#xff…...

Git忽略规则原理和.gitignore文件不生效的原因和解决办法

在使用Git进行版本控制时&#xff0c;.gitignore文件扮演着至关重要的角色。它允许我们指定哪些文件或目录应该被Git忽略&#xff0c;从而避免将不必要的文件&#xff08;如日志文件、编译产物等&#xff09;纳入版本控制中。然而&#xff0c;在实际使用过程中&#xff0c;有时…...

MySQL-数据库设计

1.范式 数据库的范式是⼀组规则。在设计关系数据库时&#xff0c;遵从不同的规范要求&#xff0c;设计出合理的关系型数 据库&#xff0c;这些不同的规范要求被称为不同的范式。 关系数据库有六种范式&#xff1a;第⼀范式&#xff08;1NF&#xff09;、第⼆范式&#xff08;…...

Unity开发绘画板——04.笔刷大小调节

笔刷大小调节 上面的代码中其实我们已经提供了笔刷大小的字段&#xff0c;即brushSize&#xff0c;现在只需要将该字段和界面中的Slider绑定即可&#xff0c;Slider值的范围我们设置为1~20 代码中只需要做如下改动&#xff1a; public Slider brushSizeSlider; //控制笔刷大…...

./mnt/container_run_medium.sh

#!/bin/bash# 清理旧的日志文件 rm -f *.log rm -f nohup.out rm -f cssd.dat# 启动 pwbox_simu 和 MediumBoxBase nohup /mnt/simutools/pwbox_simu /mnt/simutools/pw_box.conf > /dev/null 2>&1 & nohup /mnt/mediumSimu/MediumBoxBase /mnt/mediumSimu/hynn_…...

数学建模研赛总结

目录 前言进度问题四分析问题五分析数模论文经验分享总结 前言 本文为博主数学建模比赛第五天的内容记录&#xff0c;希望所写的一些内容能够对大家有所帮助&#xff0c;不足之处欢迎大家批评指正&#x1f91d;&#x1f91d;&#x1f91d; 进度 今天已经是最后一天了&#xf…...

通信工程学习:什么是TCF技术控制设施

TCF&#xff08;Technical Control Facility&#xff09;&#xff1a;技术控制设施 首先&#xff0c;需要明确的是&#xff0c;通信工程是一门涉及电子科学与技术、信息与通信工程和光学工程学科领域的基础理论、工程设计及系统实现技术的学科。它主要关注通信过程中的信息传输…...

stm32 bootloader跳转程序设计

文章目录 1、bootloader跳转程序设计&#xff08;1&#xff09;跳转程序&#xff08;2&#xff09;、app程序中需要注意<1>、在keil中ROM起始地址和分配的空间大小<2>、在system_stm32f4xx.c中设置VECT_TAB_OFFSET为需要偏移的地址<3>、main函数中使能中断 总…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了&#xff1a;一行…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)

CSI-2 协议详细解析 (一&#xff09; 1. CSI-2层定义&#xff08;CSI-2 Layer Definitions&#xff09; 分层结构 &#xff1a;CSI-2协议分为6层&#xff1a; 物理层&#xff08;PHY Layer&#xff09; &#xff1a; 定义电气特性、时钟机制和传输介质&#xff08;导线&#…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用

在工业制造领域&#xff0c;无损检测&#xff08;NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统&#xff0c;以非接触式光学麦克风技术为核心&#xff0c;打破传统检测瓶颈&#xff0c;为半导体、航空航天、汽车制造等行业提供了高灵敏…...

Leetcode33( 搜索旋转排序数组)

题目表述 整数数组 nums 按升序排列&#xff0c;数组中的值 互不相同 。 在传递给函数之前&#xff0c;nums 在预先未知的某个下标 k&#xff08;0 < k < nums.length&#xff09;上进行了 旋转&#xff0c;使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...

Android写一个捕获全局异常的工具类

项目开发和实际运行过程中难免会遇到异常发生&#xff0c;系统提供了一个可以捕获全局异常的工具Uncaughtexceptionhandler&#xff0c;它是Thread的子类&#xff08;就是package java.lang;里线程的Thread&#xff09;。本文将利用它将设备信息、报错信息以及错误的发生时间都…...