当前位置: 首页 > news >正文

如何理解矩阵的复数特征值和特征向量?

实数特征值的直观含义非常好理解,它就是在对应的特征向量方向上的纯拉伸/压缩。

而复数特征值,我们可以把它放在复数域中理解。但是这里给出一个不那么简洁、但是更加直观的理解方式:把它放在实空间中。那么复数特征值表现的就是旋转+等比放大/缩小。我们不妨从一个二维空间说起:

对二维空间的一个线性变换:

A=(a11a12a12a22)

假设它有两个复数特征值:

λ=a±bi=r(cos⁡θ±isin⁡θ)

以及相对应的两个特征向量:

v=(x1x2)±i(y1y2)

也就是说,虽然每个特征值都有一个实部和一个虚部(两个自由度),但是由于特征值必然是共轭成对出现的,那么两个特征值仍然只对应着一个实部和一个虚部(两个自由度)。对特征向量而言同理。

也就是说,一对复特征值给我们两个自由度,一个模,一个幅角。一对特征向量也给我们两个向量,一个是实部向量,一个是虚部向量。

于是乎,如下两个向量:

,(x1x2),   (y1y2)

就可以构成一个二维空间的一组基。

那么可以证明,当我们选取这两个向量为基时,原线性变换的表述就变成了:

B=r(cos⁡(θ)−sin⁡(θ)sin⁡(θ)cos⁡(θ))

这是一个旋转矩阵乘以一个数字。也就是说,在特征向量的实部和虚部构成的基底下,这个线性变换就是一个纯粹的旋转 θ 外加一个等比放大倍数 r 。

比如说,我们令(简化起见,选取行列式为1的矩阵)

A=(0.7−0.50.61)

这个矩阵把下图中蓝色的空间变换成红色的空间:

我们可以按照上述的原则进行坐标变换,变换的结果就是这样的:

我们可以看到,经过坐标变换后,蓝色空间变为红色空间就是一个纯粹的旋转过程了。这里,复数特征值和特征向量的含义就是:

  • 特征值的模代表着等比放大的倍数
  • 特征值的幅角代表着旋转的角度
  • 特征向量的实部向量和虚部向量代表着实现上述变换的一组基

我们可以很容易推广到三维空间的变换,对一个三维矩阵:

A=(a11a12a13a21a22a23a31a32a33)

我们假设这个矩阵有三个不重叠的特征值,其中两个为共轭复数:

λ1/2=a±bi,λ3=c

那么,可以证明这个矩阵和下面这样一个分块矩阵相似,也就是说,我们可以通过选取某一个坐标系,把这个线性变换写成如下形式:

B=(ab0−ba000c)

我们令:

r=a2+b2, a=rcos⁡(θ), b=rsin⁡(θ)

那么,可以看到:

B=(cos⁡(θ)−sin⁡(θ)0sin⁡(θ)cos⁡(θ)0001)(r000r000c)

我们可以看到,这个变换就可以被分解成两个单独的变换一个是纯旋转:在x-y平面中的旋转,另一个纯伸缩:在x-y平面上的均匀拉伸r倍,以及在z方向上单向拉伸c倍。

实现这种变换的基就是复特征向量的实部向量、虚部向量、以及实特征值的特征向量。具体讲,假定矩阵A的特征向量为:

v1/2=(x1x2x3)±i(y1y2y3), v3=(z1z2z3)

那么,这三个基底就是:

(x1x2x3), (y1y2y3), (z1z2z3)

也就是说,当我们拿到任意一个三维矩阵(注意,这里不考虑特征值重根的情况):

  1. 我们可以把这个矩阵变成一个纯旋转和一个纯伸缩的两个变换的组合。
  2. 纯旋转的角度就是复数特征值的幅角,旋转发生在复特征向量的实部向量和虚部向量所构成的平面中。
  3. 纯伸缩的倍数在各个方向上分别是复特征向量的模、以及实特征向量本身。

如果我们继续推广到高维空间,一个线形变换可以通过上述基底的选择表示成:

{(cos⁡θ1−sin⁡θ1sinθ1cos⁡θ1)0⋯001⋯0⋮⋮⋱⋮00⋯(cos⁡θi−sin⁡θisinθicos⁡θi)}{r100⋯000r10⋯0000λ3⋯00⋮⋮⋮⋱⋮⋮00⋯ri000⋯0ri}

也是纯旋转+纯伸缩的两种变换的组合。

相关文章:

如何理解矩阵的复数特征值和特征向量?

实数特征值的直观含义非常好理解,它就是在对应的特征向量方向上的纯拉伸/压缩。 而复数特征值,我们可以把它放在复数域中理解。但是这里给出一个不那么简洁、但是更加直观的理解方式:把它放在实空间中。那么复数特征值表现的就是旋转等比放大…...

怎么查看网站是否被谷歌收录,查看网站是否被搜索引擎收录5个方法与步骤

要查看网站是否被谷歌(Google)或其他搜索引擎收录,是网站管理和SEO(搜索引擎优化)中的一个重要环节。以下是查看网站是否被搜索引擎收录5个方法与步骤,帮助您确认网站是否被搜索引擎成功索引: …...

Java工具--stream流

Java工具--stream流 过滤(filter)统计求最大最小和均值求和(sum)过滤后,对数据进行统计 遍历(map)规约(reduce)排序(sorted)去重(dist…...

什么是 JWT?它是如何工作的?

松哥最近辅导了几个小伙伴秋招,有小伙伴在面小红书时遇到这个问题,这个问题想回答全面还是有些挑战,松哥结合之前的一篇旧文和大伙一起来聊聊。 一 无状态登录 1.1 什么是有状态 有状态服务,即服务端需要记录每次会话的客户端信…...

微信小程序使用picker,数组怎么设置默认值

默认先显示请选择XXX。然后点击弹出选择列表。如果默认value是0的话&#xff0c;他就直接默认显示数组的第一个了。<picker mode"selector" :value"planIndex" :range"planStatus" range-key"label" change"bindPlanChange&qu…...

Springboot生成树工具类,可通过 id/code 编码生成 2.0版本

优化工具类中&#xff0c;查询父级时便利多次的问题 import org.apache.commons.collections4.CollectionUtils; import org.apache.commons.lang3.mutable.MutableLong; import org.springframework.lang.NonNull; import org.springframework.lang.Nullable; import org.spri…...

17、CPU缓存架构详解高性能内存队列Disruptor实战

1.CPU缓存架构详解 1.1 CPU高速缓存概念 CPU缓存即高速缓冲存储器&#xff0c;是位于CPU与主内存间的一种容量较小但速度很高的存储器。CPU高速缓存可以分为一级缓存&#xff0c;二级缓存&#xff0c;部分高端CPU还具有三级缓存&#xff0c;每一级缓存中所储存的全部数据都是…...

算法训练营打卡Day18

目录 二叉搜索树的最小绝对差二叉搜索树中的众数二叉树的最近公共祖先额外练手题目 题目1、二叉搜索树的最小绝对差 力扣题目链接(opens new window) 给你一棵所有节点为非负值的二叉搜索树&#xff0c;请你计算树中任意两节点的差的绝对值的最小值。 示例&#xff1a; 思…...

【leetcode】169.多数元素

boyer-moore算法最简单理解方法&#xff1a; 假设你在投票选人 如果你和候选人&#xff08;利益&#xff09;相同&#xff0c;你就会给他投一票&#xff08;count1&#xff09;&#xff0c;如果不同&#xff0c;你就会踩他一下&#xff08;count-1&#xff09;当候选人票数为0&…...

MyBatis<foreach>标签的用法与实践

foreach标签简介 实践 demo1 简单的一个批量更新&#xff0c;这里传入了一个List类型的集合作为参数&#xff0c;拼接到 in 的后面 &#xff0c;来实现一个简单的批量更新 <update id"updateVislxble" parameterType"java.util.List">update model…...

R语言Shiny包新手教程

R语言Shiny包新手教程 1. 简介 Shiny 是一个 R 包&#xff0c;用于创建交互式网页应用。它非常适合展示数据分析结果和可视化效果。 2. 环境准备 安装R和RStudio 确保你的计算机上安装了 R 和 RStudio。你可以从 CRAN 下载 R&#xff0c;或从 RStudio 官网 下载 RStudio。…...

[大象快讯]:PostgreSQL 17 重磅发布!

家人们&#xff0c;数据库界的大新闻来了&#xff01;&#x1f4e3; PostgreSQL 17 正式发布&#xff0c;全球开发者社区的心血结晶&#xff0c;带来了一系列令人兴奋的新特性和性能提升。 发版通告全文如下 PostgreSQL 全球开发小组今天&#xff08;2024-09-26&#xff09;宣布…...

CHI trans--Home节点发起的操作

总目录&#xff1a; CHI协议简读汇总-CSDN博客https://blog.csdn.net/zhangshangjie1/article/details/131877216 Home节点能够发起的操作&#xff0c;包含如下几类&#xff1a; Home to Subordinate Read transactionsHome to Subordinate Write transactionsHome to Subor…...

Rust和Go谁会更胜一筹

在国内&#xff0c;我认为Go语言会成为未来的主流&#xff0c;因为国内程序员号称码农&#xff0c;比较适合搬砖&#xff0c;而Rust对心智要求太高了&#xff0c;不适合搬砖。 就个人经验来看&#xff0c;Go语言简单&#xff0c;下限低&#xff0c;没有什么心智成本&#xff0c…...

记HttpURLConnection下载图片

目录 一、示例代码1 二、示例代码2 一、示例代码1 import java.io.*; import java.net.HttpURLConnection; import java.net.URL;public class Test {/*** 下载图片*/public void getNetImg() {InputStream inStream null;FileOutputStream fOutStream null;try {// URL 统…...

物联网实训室建设的必要性

物联网实训室建设的必要性 一、物联网发展的背景 物联网&#xff08;IoT&#xff09;是指通过信息传感设备&#xff0c;按照约定的协议&#xff0c;将任何物品与互联网连接起来&#xff0c;进行信息交换和通信&#xff0c;以实现智能化识别、定位、跟踪、监控和管理的一种网络…...

初识C语言(四)

目录 前言 十一、常见关键字&#xff08;补充&#xff09; &#xff08;1&#xff09;register —寄存器 &#xff08;2&#xff09;typedef类型重命名 &#xff08;3&#xff09;static静态的 1、修饰局部变量 2、修饰全局变量 3、修饰函数 十二、#define定义常量和宏…...

产品架构图:从概念到实践

在当今快速发展的科技时代&#xff0c;产品架构图已成为产品经理和设计师不可或缺的工具。它不仅帮助我们理解复杂的产品体系&#xff0c;还能指导我们进行有效的产品设计和开发。本文将深入探讨产品架构图的概念、重要性以及绘制方法。 整个内容框架分为三个部分&#xff0c;…...

smartctl 命令:查看硬盘健康状态

一、命令简介 ​smartctl​ 命令用于获取硬盘的 SMART 信息。 介绍硬盘SMART 硬盘的 SMART (Self-Monitoring, Analysis, and Reporting Technology) 技术用于监控硬盘的健康状态&#xff0c;并能提供一些潜在故障的预警信息。通过查看 SMART 数据&#xff0c;用户可以了解硬…...

BBR 为什么没有替代 CUBIC 成为 Linux 内核缺省算法

自 2017 年底 bbr 发布以来&#xff0c;随着媒体的宣讲&#xff0c;各大站点陆续部署 bbr&#xff0c;很多网友不禁问&#xff0c;bbr 这么好&#xff0c;为什么不替代 cubic 成为 linux 的缺省算法。仅仅因为它尚未标准化&#xff1f;这么好的算法又为什么没被标准化&#xff…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

css实现圆环展示百分比,根据值动态展示所占比例

代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

STM32HAL库USART源代码解析及应用

STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...