当前位置: 首页 > news >正文

【QT】亲测有效:“生成的目标文件包含了过多的段,超出了编译器或链接器允许的最大数量”错误的解决方案

在使用dlib开发人脸对齐功能时,出现了”生成的目标文件包含了过多的段,超出了编译器或链接器允许的最大数量的错误“。
主要功能代码如下:
#include <QApplication>
#include <QImage>
#include <QDebug>#include <dlib/opencv.h>
#include <opencv2/highgui/highgui.hpp>
#include <dlib/image_processing/frontal_face_detector.h>
#include <dlib/image_processing/render_face_detections.h>
#include <dlib/image_processing.h>
#include <dlib/gui_widgets.h>
#include <dlib/image_io.h>
#include <iostream>#include <dlib/matrix.h>#include <opencv2/opencv.hpp>
#include <opencv2/opencv_modules.hpp>
#include <opencv2/imgproc/imgproc.hpp>#include <dlib/dnn.h>#define FACE_DOWNSAMPLE_RATIO 4
#define SKIP_FRAMES 2
#define DLIB_PNG_SUPPORT
#define DLIB_JPEG_SUPPORT
using namespace cv;
using namespace std;
using namespace dlib;template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
using residual = add_prev1<block<N,BN,1,tag1<SUBNET>>>;template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
using residual_down = add_prev2<avg_pool<2,2,2,2,skip1<tag2<block<N,BN,2,tag1<SUBNET>>>>>>;template <int N, template <typename> class BN, int stride, typename SUBNET>
using block  = BN<con<N,3,3,1,1,relu<BN<con<N,3,3,stride,stride,SUBNET>>>>>;template <int N, typename SUBNET> using ares      = relu<residual<block,N,affine,SUBNET>>;
template <int N, typename SUBNET> using ares_down = relu<residual_down<block,N,affine,SUBNET>>;template <typename SUBNET> using alevel0 = ares_down<256,SUBNET>;
template <typename SUBNET> using alevel1 = ares<256,ares<256,ares_down<256,SUBNET>>>;
template <typename SUBNET> using alevel2 = ares<128,ares<128,ares_down<128,SUBNET>>>;
template <typename SUBNET> using alevel3 = ares<64,ares<64,ares<64,ares_down<64,SUBNET>>>>;
template <typename SUBNET> using alevel4 = ares<32,ares<32,ares<32,SUBNET>>>;using anet_type = loss_metric<fc_no_bias<128,avg_pool_everything<alevel0<alevel1<alevel2<alevel3<alevel4<max_pool<3,3,2,2,relu<affine<con<32,7,7,2,2,input_rgb_image_sized<150>>>>>>>>>>>>>;// 计算两个人脸的相似度
double compare_faces(const array2d<rgb_pixel>& img1, const array2d<rgb_pixel>& img2, shape_predictor& sp, anet_type& net) {// 检测人脸frontal_face_detector detector = get_frontal_face_detector();std::vector<dlib::rectangle> dets1 = detector(img1);std::vector<dlib::rectangle> dets2 = detector(img2);if (dets1.empty() || dets2.empty()) {throw std::runtime_error("No faces detected in one of the images.");}// 提取人脸特征full_object_detection shape1 = sp(img1, dets1[0]);full_object_detection shape2 = sp(img2, dets2[0]);// 计算人脸特征向量matrix<rgb_pixel> face_chip1;extract_image_chip(img1, get_face_chip_details(shape1, 150, 0.25), face_chip1);matrix<rgb_pixel> face_chip2;extract_image_chip(img2, get_face_chip_details(shape2, 150, 0.25), face_chip2);// 获取128维特征向量auto face_descriptor1 = net(face_chip1);auto face_descriptor2 = net(face_chip2);// 计算距离double distance = length(face_descriptor1 - face_descriptor2);return distance;
}int main(int argc, char** argv)
{QApplication app(argc, argv);// 加载模型shape_predictor sp;deserialize("shape_predictor_68_face_landmarks.dat") >> sp;anet_type net;deserialize("dlib_face_recognition_resnet_model_v1.dat") >> net;// 加载图像array2d<rgb_pixel> img1, img2;load_image(img1, "path/to/your/image1.jpg");load_image(img2, "path/to/your/image2.jpg");// 进行人脸比对try {double distance = compare_faces(img1, img2, sp, net);qDebug()<<QString::number(distance);QString result = (distance < 0.6) ? "Faces match!" : "Faces do not match!";qDebug()<<result;} catch (const std::exception& e) {qDebug()<<e.what();}return app.exec();
}
错误控制台显示:
这个错误信息表明在编译过程中,生成的目标文件main.o包含了过多的段(sections),超出了编译器或链接器允许的最大数量。在某些嵌入式系统或使用特定工具链的情况下,目标文件的段数量会有严格的限制。
  解决方法:
  • 优化代码结构:检查代码,尝试减少不必要的函数和全局变量,以此减少段的数量。
  • 使用更小的数据类型:如果可能,使用更小的数据类型,如int替换为short,long替换为short或int,以减少内存占用和段的数量。
  • 减少链接器的内存占用:调整链接器的内存配置,例如在某些链接器中可以通过设置内存段的大小来减少段的数量。
  • 使用更高级的编译器或链接器:升级到更高版本的编译器或链接器,新版本可能增加了对更多段的支持,或者提供了优化选项来减少段的数量。
  • 配置编译器:有些编译器允许通过特定选项来调整段的生成策略,比如GNU编译器中的-ffunction-sections和-fdata-sections选项可以将函数和数据分别放入独立的段中。
  • 分割代码:如果可能,将代码分割成多个小的源文件和库,以减少每个目标文件的段数量。
  • 检查编译器和链接器文档:查看编译器和链接器的文档,看是否有特定的选项或配置可以帮助减少段的数量。
  • 联系工具链提供商:如果上述方法都无法解决问题,可以考虑联系你正在使用的编译器或链接器的技术支持。
  • 在实施以上任何一个解决方案之前,请确保了解这些更改可能对代码的其他方面产生的影响,并在必要时对代码进行适当的测试。
快速简单的解决方案:是由Debug模式切换成Release模式。

相关文章:

【QT】亲测有效:“生成的目标文件包含了过多的段,超出了编译器或链接器允许的最大数量”错误的解决方案

在使用dlib开发人脸对齐功能时&#xff0c;出现了”生成的目标文件包含了过多的段&#xff0c;超出了编译器或链接器允许的最大数量的错误“。 主要功能代码如下&#xff1a; #include <QApplication> #include <QImage> #include <QDebug>#include <dlib…...

什么是 Apache Ingress

Apache Ingress 主要用于管理来自外部的 HTTP 和 HTTPS 流量&#xff0c;并将其路由到合适的 Kubernetes 服务。 容器化与 Kubernetes 是现代云原生应用程序的基础。Kubernetes 的主要职责是管理容器集群&#xff0c;确保它们的高可用性和可扩展性&#xff0c;同时还提供自动化…...

SpringBoot助力墙绘艺术市场创新

3 系统分析 当用户确定开发一款程序时&#xff0c;是需要遵循下面的顺序进行工作&#xff0c;概括为&#xff1a;系统分析–>系统设计–>系统开发–>系统测试&#xff0c;无论这个过程是否有变更或者迭代&#xff0c;都是按照这样的顺序开展工作的。系统分析就是分析系…...

Antlr的使用

概念 ANTLR&#xff08;ANother Tool for Language Recognition&#xff09;是一个强大的解析器生成工具&#xff0c;用于读取、处理、执行或翻译结构化文本或二进制文件。ANTLR通过定义文法&#xff08;grammar&#xff09;来识别、构建和访问语言中的元素。 ANTLR为包括Jav…...

HealChat心理大语言模型 丨OPENAIGC开发者大赛高校组AI创作力奖

在第二届拯救者杯OPENAIGC开发者大赛中&#xff0c;涌现出一批技术突出、创意卓越的作品。为了让这些优秀项目被更多人看到&#xff0c;我们特意开设了优秀作品报道专栏&#xff0c;旨在展示其独特之处和开发者的精彩故事。 无论您是技术专家还是爱好者&#xff0c;希望能带给…...

PyQt5整合爬虫制作图片爬取器-幽络源

前言 本篇教程适合对Python爬虫和Python软件制作感兴趣的小伙伴阅读&#xff0c;看完本篇教程&#xff0c;你将能更深入了解PyQt5与实际功能的整合方式。 1.设计界面 首先在pycharm中创建一个新目录&#xff0c;这里我建立的目录名为爬图片&#xff0c;然后按如图打开Qt设计…...

DC00023基于jsp+MySQL新生报到管理系统

1、项目功能演示 DC00023基于jsp新生报到管理系统java webMySQL新生管理系统 2、项目功能描述 基于jspMySQL新生报到管理系统项目分为学生、辅导员、财务处和系统管理员四个角色。 2.1 学生功能 1、系统登录 2、校园新闻、报到流程、学校简介、在线留言、校园风光、入校须知…...

AdaptIoT——制造业中使用因果关系的自我标签系统

0.概述 论文地址&#xff1a;https://arxiv.org/abs/2404.05976 在许多制造应用中&#xff0c;机器学习&#xff08;ML&#xff09;已被证明可以提高生产率。针对制造业应用提出了一些软件和工业物联网&#xff08;IIoT&#xff09;系统&#xff0c;以接收这些 ML 应用。最近&…...

代码随想录算法训练营Day15

654.最大二叉树 力扣题目链接&#xff1a;. - 力扣&#xff08;LeetCode&#xff09; 前序递归、循环不变量 class Solution {public TreeNode constructMaximumBinaryTree(int[] nums) {return findmax(nums,0,nums.length);}public TreeNode findmax(int[] nums,int lefti…...

Thinkphp/Laravel旅游景区预约系统的设计与实现

目录 技术栈和环境说明具体实现截图设计思路关键技术课题的重点和难点&#xff1a;框架介绍数据访问方式PHP核心代码部分展示代码目录结构解析系统测试详细视频演示源码获取 技术栈和环境说明 采用PHP语言开发&#xff0c;开发环境为phpstudy 开发工具notepad并使用MYSQL数据库…...

SpringCloud学习记录|day1

学习材料 2024最新SpringCloud微服务开发与实战&#xff0c;java黑马商城项目微服务实战开发&#xff08;涵盖MybatisPlus、Docker、MQ、ES、Redis高级等&#xff09; 学redis讲到微服务就停了&#xff0c;nginx也是。 所以嘛&#xff0c;我终于来到微服务了。 复习MyBatisP…...

Elasticsearch讲解

1.Elasticsearch基本知识 1.基本认识和安装 Elasticsearch是由elastic公司开发的一套搜索引擎技术&#xff0c;它是elastic技术栈中的一部分。完整的技术栈包括&#xff1a; Elasticsearch&#xff1a;用于数据存储、计算和搜索 Logstash/Beats&#xff1a;用于数据收集 Kib…...

Linux嵌入式有发展吗,以及对uboot,kernel,rootfs的领悟

工作多年后&#xff0c;对uboot&#xff0c;kernel&#xff0c;rootfs的领悟&#xff0c;总结 上大学时&#xff0c;51单片机&#xff0c;正点原子的stm32&#xff0c;linux arm开发。对uboot&#xff0c;kernel&#xff0c;rootfs的理解云里雾里&#xff0c;感觉自己很懂了 其…...

基于Springboot+Vue的公寓管理系统(含源码+数据库)

1.开发环境 开发系统:Windows10/11 架构模式:MVC/前后端分离 JDK版本: Java JDK1.8 开发工具:IDEA 数据库版本: mysql5.7或8.0 数据库可视化工具: navicat 服务器: SpringBoot自带 apache tomcat 主要技术: Java,Springboot,mybatis,mysql,vue 2.视频演示地址 3.功能 该系统…...

多功能声学气膜馆:承载梦想与希望的舞台—轻空间

在9月29日上午&#xff0c;苏州大学应用技术学院的2024级新生开学典礼暨开学第一课在轻空间建造的多功能声学气膜馆内盛大举行。这一盛典不仅见证了2849名新生的入学&#xff0c;也展示了气膜馆的独特魅力与优越功能。 卓越的声学表现 声学气膜馆采用高性能材料&#xff0c;确保…...

【线程】线程池

线程池通过一个线程安全的阻塞任务队列加上一个或一个以上的线程实现&#xff0c;线程池中的线程可以从阻塞队列中获取任务进行任务处理&#xff0c;当线程都处于繁忙状态时可以将任务加入阻塞队列中&#xff0c;等到其它的线程空闲后进行处理。 线程池作用&#xff1a; 1.降…...

输出 / 目录下所有目录文件的大小并排序

使用 du -sh /* 输出 / 目录下所有的目录总大小&#xff0c;看下效果&#xff1a; [rootlocalhost ~]# du -sh /* 0 /bin 110M /boot 0 /dev 32M /etc 12K /home 0 /lib 0 /lib64 0 /media 0 /mnt 0 /opt du: cannot access ‘/proc/2731/task/2731/fd/4’: No such file or …...

【hot100-java】【编辑距离】

多维dp篇 class Solution {public int minDistance(String word1, String word2) {char [] sword1.toCharArray();char [] tword2.toCharArray();int ns.length;int mt.length;int [][] fnew int[n1][m1];for (int j1;j<m;j){f[0][j]j;}for(int i0;i<n;i){f[i1][0]i1;for…...

随手记:牛回速归

上周-国庆前&#xff1a;牛回速归 国庆&#xff1a;小心被套住 国庆后&#xff1a;一片迷茫 总结&#xff1a;要是上周到国庆前的基本都能捞到&#xff0c;后面情况不好说 后续持续更新...

UI设计师面试整理-设计过程和方法论

在UI设计师面试中,清晰地阐述你的设计过程和方法论是至关重要的。这不仅可以展示你的专业技能和设计思维,也能让面试官看到你是如何解决实际设计问题的。以下是一个全面的UI设计过程和常用方法论的概述,你可以根据你的经验进行相应调整。 1. 设计过程 a. 研究与发现阶段(Re…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框&#xff0c;很难让人不联想到SQL注入&#xff0c;但提示都说了不是SQL注入&#xff0c;所以就不往这方面想了 ​ 先查看一下网页源码&#xff0c;发现一段JavaScript代码&#xff0c;有一个关键类ctfs…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留&#xff0c;CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制&#xff08;CCA-Attention&#xff09;&#xff0c;…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;Ingress是一个API对象&#xff0c;它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress&#xff0c;你可…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)

目录 1.TCP的连接管理机制&#xff08;1&#xff09;三次握手①握手过程②对握手过程的理解 &#xff08;2&#xff09;四次挥手&#xff08;3&#xff09;握手和挥手的触发&#xff08;4&#xff09;状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...