两个向量所在平面的法线,外积,叉积,行列式
偶尔在一个数学题里面看到求两向量所在平面的法线,常规方法可以通过法线与两向量垂直这一特点,列两个方程求解;另外一种方法可以通过求解两个向量的叉积,用矩阵行列式 (determinant) 的方式,之前还没见过,在这篇博客里记录下。
两个向量的叉积(cross product),又称作外积,表达式为:
a × b = ∥ a ∥ ∥ b ∥ sin θ \mathbf{a}\times\mathbf{b}=\|a\|\|b\|\sin\theta a×b=∥a∥∥b∥sinθ
它的几何意义就是这两个向量所在平面的法线,其中 θ \theta θ 为两向量的夹角,法线的长度为这两个向量形成的平行四边形的面积。(两个向量点积的表达式为: a ⋅ b = ∥ a ∥ ∥ b ∥ cos θ \mathbf{a}\cdot\mathbf{b}=\|a\|\|b\|\cos\theta a⋅b=∥a∥∥b∥cosθ )
- 叉积本质上是一个几何运算,用来构造一个垂直于两个给定向量的向量,并且其长度为两个向量所构成的平行四边形的面积

向量叉积的方向根据右手定则确定。
具体在求解上,求解矩阵行列式非常方便,假如为三维向量,
a × b = ∣ i j k a 1 a 2 a 3 b 1 b 2 b 3 ∣ = ( a 2 b 3 − a 3 b 2 ) i + ( a 3 b 1 − a 1 b 3 ) k + ( a 1 b 2 − a 2 b 1 ) k \mathbf{a}\times\mathbf{b}= \begin{vmatrix} i&j&k\\ a_1&a_2&a_3\\ b_1&b_2&b_3\\ \end{vmatrix}=(a_2b_3-a_3b_2)i+(a_3b_1-a_1b_3)k+(a_1b_2-a_2b_1)k a×b= ia1b1ja2b2ka3b3 =(a2b3−a3b2)i+(a3b1−a1b3)k+(a1b2−a2b1)k
其中, i , j , k i,j,k i,j,k 为叉积所在坐标系各个坐标轴的单位向量。因此,根据上面的计算,叉积向量可以表示为:
( a 2 b 3 − a 3 b 2 , a 3 b 1 − a 1 b 3 , a 1 b 2 − a 2 b 1 ) \big(a_2b_3-a_3b_2,~~ a_3b_1-a_1b_3, ~~a_1b_2-a_2b_1\big) (a2b3−a3b2, a3b1−a1b3, a1b2−a2b1)
为什么可以这样求?这跟叉积,点积以及行列式,余子式的几何意义有关。(其实有点复杂)
- 三个向量行列式的几何意义是这三个向量形成的平行六面体的体积,

- 两个向量行列式的几何意义是这两个向量形成的平行四边形的面积
- 计算行列式的展开就是把整个三维体积拆解为不同的二维平行四边形的面积和相应方向上的高度的加权和
∣ i j k a 1 a 2 a 3 b 1 b 2 b 3 ∣ = ∣ a 2 a 3 b 2 b 3 ∣ i + ∣ a 1 a 3 b 1 b 3 ∣ j + ∣ a 1 a 2 b 1 b 2 ∣ k (1) \begin{vmatrix} i&j&k\\ a_1&a_2&a_3\\ b_1&b_2&b_3\\ \end{vmatrix}=\begin{vmatrix}a_2&a_3\\b_2&b_3\end{vmatrix}i+\begin{vmatrix}a_1&a_3\\b_1&b_3\end{vmatrix}j+\begin{vmatrix}a_1&a_2\\b_1&b_2\end{vmatrix}k\tag{1} ia1b1ja2b2ka3b3 = a2b2a3b3 i+ a1b1a3b3 j+ a1b1a2b2 k(1)
- 三个向量组成的平行多面体有一个体积公式
V = ∣ c ⋅ ( a × b ) ∣ V=|\mathbf{c}\cdot(\mathbf{a}\times \mathbf{b})| V=∣c⋅(a×b)∣
将向量 c \mathbf{c} c 看成 ( i , j , k ) (i,j,k) (i,j,k),
而叉积向量 a × b \mathbf{a}\times \mathbf{b} a×b 看成 ( ∣ a 2 a 3 b 2 b 3 ∣ , ∣ a 1 a 3 b 1 b 3 ∣ , ∣ a 1 a 2 b 1 b 2 ∣ ) (\begin{vmatrix}a_2&a_3\\b_2&b_3\end{vmatrix},~~\begin{vmatrix}a_1&a_3\\b_1&b_3\end{vmatrix},~~\begin{vmatrix}a_1&a_2\\b_1&b_2\end{vmatrix}) ( a2b2a3b3 , a1b1a3b3 , a1b1a2b2 ), 可以得到公式 (1),因此可以使用行列式来计算叉积!
相关文章:
两个向量所在平面的法线,外积,叉积,行列式
偶尔在一个数学题里面看到求两向量所在平面的法线,常规方法可以通过法线与两向量垂直这一特点,列两个方程求解;另外一种方法可以通过求解两个向量的叉积,用矩阵行列式 (determinant) 的方式,之前还没见过,在…...
C++之 友元重载 以及最常用的几种友元函数
在之前的友元中就曾经讲过,我们为了去访问修改私有成员中的数据时,只能通过公有的办法去进行访问操作,非常的局限。所以C引用了友元函数,只要加上friend关键字,C的这个类,会自动把这个函数的权限拉到类内&a…...
动态规划(3)——dp多状态问题Ⅰ
题一.按摩师(LeetCode) 题目描述 一个有名的按摩师会收到源源不断的预约请求,每个预约都可以选择接或不接。在每次预约服务之间要有休息时间,因此她不能接受相邻的预约。给定一个预约请求序列,替按摩师找到最优的预约集…...
在Mac电脑上安装adb环境
当你在命令行输入 adb version 或adb devices, 报错:zsh: command not found: adb ,那么说明你的 Mac 上没有安装 ADB(Android Debug Bridge),或者它没有添加到你的路径中。你可以按照以下步骤安装和配置 ADBÿ…...
分糖果C++
题目: 样例解释: 样例1解释 拿 k20 块糖放入篮子里。 篮子里现在糖果数 20≥n7,因此所有小朋友获得一块糖; 篮子里现在糖果数变成 13≥n7,因此所有小朋友获得一块糖; 篮子里现在糖果数变成 6<n7…...
Spring中如何为静态变量注入值
在 Spring 中,如果使用 Value 注解注入值,不能将其应用于 static 字段。Spring 只能为实例变量注入值,不能直接对静态变量进行注入。 使用 PostConstruct 初始化: 如果确实需要在静态上下文中使用该值,可以使用 Post…...
HTML5实现唐朝服饰网站模板源码
文章目录 1.设计来源1.1 网站首页-界面效果1.2 唐装演变-界面效果1.3 唐装配色-界面效果1.4 唐装花纹-界面效果1.5 唐装文化-界面效果 2.效果和源码2.1 动态效果2.2 源代码 源码下载万套模板,程序开发,在线开发,在线沟通 作者:xcL…...
ESXI识别USB设备
步骤: 插入usb设备到服务器。关闭虚拟机,添加USB控制器,根据U盘选择usb 3.0控制器,再添加usb设备如果usb设备灰色,进入主机打开SSH。使用xshell进行连接,运行以下命令: ESXI识别USB设备 - 插入…...
视频美颜SDK与直播美颜工具API是什么?计算机视觉技术详解
今天,小编将深入探讨视频美颜SDK与直播美颜工具API的概念及其背后的计算机视觉技术。 一、视频美颜SDK的概念 视频美颜SDK是一套用于开发实时美颜效果的工具集,开发者可以利用它在视频流中实现面部特征的优化。这些SDK通常提供了一系列功能,…...
not exist 解决一对多 场景 条件过滤问题
场景: 现在存在一对多关系,蓝色的盒子装的篮球,黄的的盒子装的黄球, 黑色的盒子 (模拟工作类似场景) boxIdballId蓝盒ID-15蓝盒ID-16蓝盒ID-17黄盒ID-212黄盒ID-215黄盒ID-216黑盒ID-38黑盒ID-39 需求&a…...
解决$‘r‘ command not found或者文件夹显示’tvsf 33‘$‘r‘
问题现象: 某客户反馈在执行脚本的时候文件夹显示存在问题,如下图: 但是脚本文件中的内容并没有\r字符,如下图: 也有客户反馈如下: 问题分析: $\r’是回车符的转义表示。在Unix和Linux系统中,回车符是一个不可见的控制字符,它通常用于文本文件中的行结尾。以上…...
linux:详解nohup命令
在 UNIX 和类 UNIX 操作系统(如 Linux 和 macOS)中,nohup 意图为后台运行且免疫挂断信号的命令,用于在用户注销(logout)或终端关闭后继续运行相应的进程。 基本语法 启动进程 nohup [COMMAND] [ARG...] …...
负载箱:充电桩测试利器
RCD负载箱是用于测试和验证电气设备在故障状态下的性能的设备。它可以模拟真实的负载情况,从而帮助工程师和技术人员对设备进行准确的检测和维护。此外,RCD负载箱也是一种重要的安全保护设备,主要用于防止电路中的漏电现象引发的事故。它通常…...
Ubuntu 开机自启动 .py / .sh 脚本,可通过脚本启动 roslaunch/roscore等
前言 项目中要求上电自启动定位程序,所以摸索了一种 Ubuntu 系统下开机自启动的方法,开机自启动 .sh 脚本,加载 ROS 环境的同时启动 .py 脚本。在 . py 脚本中启动一系列 ROS 节点。 一、 .sh 脚本的编写 #!/bin/bash # gnome-terminal -- …...
RabbitMQ 消息队列:生产者与消费者实现详解
在分布式系统中,消息队列(Message Queue, MQ)是一种重要的组件,用于解耦系统、异步处理任务以及实现系统间的通信。RabbitMQ 是一个流行的开源消息代理软件,它实现了高级消息队列协议(AMQP)。在…...
vue3项目中组件切换不起作用
以下这种方式写页面中组件切换,不起作用。 <component :is"steps[compIndex].comp" />解决:使用shallowReactive或者shallowRef把对应的组件名称重新定义下。 <component :is"compNames[steps[compIndex].comp]" /> &…...
YOLOv11改进策略【损失函数篇】| Slide Loss,解决简单样本和困难样本之间的不平衡问题
一、本文介绍 本文记录的是改进YOLOv11的损失函数,将其替换成Slide Loss,并详细说明了优化原因,注意事项等。Slide Loss函数可以有效地解决样本不平衡问题,为困难样本赋予更高的权重,使模型在训练过程中更加关注困难样…...
动静态库(Linux)
文章目录 前言一、静态库二、动态库三、深入理解动态库总结 前言 我们之前用过c语言的库.Linux中默认的都是使用动态库,如果想要使用静态库,就必须加上-static选项。默认都是安装的动态库,系统中一般没有静态库,如果要使用&#…...
51单片机和ARM单片机的区别
在嵌入式系统设计与应用中,单片机作为核心控制单元,扮演着至关重要的角色。其中,51单片机和ARM单片机作为两种常见的单片机类型,各自具有独特的特点和优势。本文将从多个维度深入探讨这两种单片机的区别,以便读者更好地…...
[Day 81] 區塊鏈與人工智能的聯動應用:理論、技術與實踐
區塊鏈在食品安全中的應用 前言 食品安全一直是全球關注的問題,隨著全球供應鏈的複雜性增加,追踪食品從生產到消費的過程變得愈發困難。區塊鏈技術以其去中心化、不可篡改的特性,為食品安全提供了可靠的解決方案。在這篇文章中,…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...
微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
微信小程序 - 手机震动
一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注:文档 https://developers.weixin.qq…...
多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...
AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...
Mac下Android Studio扫描根目录卡死问题记录
环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...
HDFS分布式存储 zookeeper
hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...
AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
