当前位置: 首页 > news >正文

如何在 Windows10 下运行 Tensorflow 的目标检测?

前言

        看过很多博主通过 Object Detection 实现了一些皮卡丘捕捉,二维码检测等诸多特定项的目标检测。而我跟着他们的案例来运行的时候,不是 Tensorflow 版本冲突,就是缺少什么包,还有是运行官方 object_detection_tutorial 不展示图片等等问题。

        在看过一个国外博主例子,我也通过 Tensorflow-GPU1.10.0 运行了官方例子,既然要使用 GPU 则需要把 CUDA 先配置好,上一篇文章有特别详细介绍到。而这里就捋一下在运行过程遇到的种种问题。

环境

1. windows10 的 64 位电脑

2. 显卡 GeForce GTX 750 Ti

3. Python 3.6.13

4. Tensorflow-GPU 1.10.0

5. Cuda 9.0.176

6. Cudnn7.0.5

环境搭建

1.  安装 Python 3.6.13 环境

由于之前我有其他项目用了高版本的 Py,这里我就用了 Anconda3 的 conda 创建一个虚拟环境,这里的 conda 的 bin 目录需要加到环境变量中。

1.1. 查看环境列表

输入 conda env list,就可以列出以往所有的环境名了,也是为了避免后面太多相似

1.2. 创建新环境并进入

conda create -n object_dection python=3.6 && conda activate object_dection

1.3. 安装 Tensorflow-gpu

因为以上通过 conda 创建了新环境也安装了 pip,所以只需要输入 pip install tensorflow-gpu==1.10.0,在下载过程中可能会中断,要多试几次。

1.4. 安装其他依赖

conda install -c anaconda protobuf
pip install pillow
pip install lxml
pip install Cython
pip install jupyter (时间较长,可能会中断)
pip install matplotlib
pip install pandas
pip install opencv-python (安装是可能会被杀毒软件误报)

资源下载

1. 下载与 TF 1.10.0 对应的模型库

以下是对应关系,我这里就选择 ”tensorflow/models/tree/b07b494e3514553633b132178b4c448f994d59df“,下载完毕后放入一个盘符下即可。

TensorFlow版本   GitHub 模型存储库提交
TF v1.7			https://github.com/tensorflow/models/tree/adfd5a3aca41638aa9fb297c5095f33d64446d8f
TF v1.8			https://github.com/tensorflow/models/tree/abd504235f3c2eed891571d62f0a424e54a2dabc
TF v1.9			https://github.com/tensorflow/models/tree/d530ac540b0103caa194b4824af353f1b073553b
TF v1.10		https://github.com/tensorflow/models/tree/b07b494e3514553633b132178b4c448f994d59df
TF v1.11		https://github.com/tensorflow/models/tree/23b5b4227dfa1b23d7c21f0dfaf0951b16671f43
TF v1.12		https://github.com/tensorflow/models/tree/r1.12.0
TF v1.13		https://github.com/tensorflow/models/tree/r1.13.0
最新版本	 	  https://github.com/tensorflow/models

2. 下载 TF 的目标检测模型

下载地址在模型库的 research/object_detection/g3doc/tf1_detection_zoo.md 里,模型选择就很有讲究了,若要在计算能力较差的设备上 (智能手机、树莓派、FPGA 等嵌入式系统中),使用 SSD-MobileNet 系列,若在工作站上训练检测可使用 RCNN 系列。这里选择的是 ”Faster-RCNN-Inception-V2“,下载完毕后放入上面模型库里的 object-detection-model\research\object_detection 下面。

3. 下载国外博主提供的 demo

地址:https://github.com/EdjeElectronics/TensorFlow-Object-Detection-API-Tutorial-Train-Multiple-Objects-Windows-10#3-gather-and-label-pictures,下载后解压放入 object-detection-model\research\object_detection。

环境配置

1. 配置模型的环境变量

需要将 \models, \models\research, and \models\research\slim 三个路径加入到 path 的环境变量中。

2. 编译 Protobuf 文件

命令的目录切换到 "object-detection-model\research” 下,通过前面 conda 安装的 protobuf 将.proto 编译成 name_pb2.py 文件,输入以下命令。

protoc --python_out=. .\object_detection\protos\anchor_generator.proto .\object_detection\protos\argmax_matcher.proto .\object_detection\protos\bipartite_matcher.proto .\object_detection\protos\box_coder.proto .\object_detection\protos\box_predictor.proto .\object_detection\protos\eval.proto .\object_detection\protos\faster_rcnn.proto .\object_detection\protos\faster_rcnn_box_coder.proto .\object_detection\protos\grid_anchor_generator.proto .\object_detection\protos\hyperparams.proto .\object_detection\protos\image_resizer.proto .\object_detection\protos\input_reader.proto .\object_detection\protos\losses.proto .\object_detection\protos\matcher.proto .\object_detection\protos\mean_stddev_box_coder.proto .\object_detection\protos\model.proto .\object_detection\protos\optimizer.proto .\object_detection\protos\pipeline.proto .\object_detection\protos\post_processing.proto .\object_detection\protos\preprocessor.proto .\object_detection\protos\region_similarity_calculator.proto .\object_detection\protos\square_box_coder.proto .\object_detection\protos\ssd.proto .\object_detection\protos\ssd_anchor_generator.proto .\object_detection\protos\string_int_label_map.proto .\object_detection\protos\train.proto .\object_detection\protos\keypoint_box_coder.proto .\object_detection\protos\multiscale_anchor_generator.proto .\object_detection\protos\graph_rewriter.proto

3. 安装 Object-Detection

继续在 “object-detection-model\research” 目录下,分别运行下面两个命令,并且会多出几个文件夹。

python setup.py build
python setup.py install

验证与运行

为了验证 Object Detection 是否安装成功,也为了运行目标检测官方案例。通过前面安装的 jupyter,执行以下命令,前提是命令目录需要切换到 “object-detection-model\research\object_detection”。

jupyter notebook object_detection_tutorial.ipynb

运行后默认会打开浏览器,然后打开脚本,并能一次一步地浏览代码部分。可以通过单击上面工具栏中的 “运行” 按钮逐步浏览每个部分。当小节旁边的 “In [*] 文本中的数字出现时,该节将完成运行 (例如 “In [1]”)。(注意:其中有一步是从 GitHub 上下载 ssd_mobilenet_v1 模型,大约 74M,需要多等一会,程序是在执行的,并不是死机或出错。静等 In [*] 中的 * 变成数字)。但是当我在点击每段代码时,就有以下几个报错。

1. Could not find 'cudart64_90.dll'. TensorFlow requires that this DLL be installed in a directory that
原因:本地电脑没有 CUDA 的 cudart64_90.dll 文件,当安装 CUDA 后还报错,原来是启动窗口没有关闭,命令找的是旧环境地址
方法:重启打开该 conda 环境,再重新启动 jupyter 命令。

2. Please upgrade your tensorflow installation to v1.4.* or later
原因:反复确认过在该环境下安装的是 TF1.10.0,目前不知道什么原因,以下方法虽然解决了,但是第一段代码运行还有有一些异常信息。
方法:打开 object_detection_tutorial.ipynb 文件,找到 "source", 删除或注释掉以下代码。

3. 目标检测的图片不出来。
原因:目前不知道原因,没有错误提示,我也更换过浏览器。
方法:代码运行选择了 run all,在火狐浏览器里就出来了。

4. 最后如果需要上面的下载代码,可以留言,到时候我再贴出来。

相关文章:

如何在 Windows10 下运行 Tensorflow 的目标检测?

前言 看过很多博主通过 Object Detection 实现了一些皮卡丘捕捉,二维码检测等诸多特定项的目标检测。而我跟着他们的案例来运行的时候,不是 Tensorflow 版本冲突,就是缺少什么包,还有是运行官方 object_detection_tutorial 不展示…...

【jvm系列-04】精通运行时数据区共享区域---堆

JVM系列整体栏目 内容链接地址【一】初识虚拟机与java虚拟机https://blog.csdn.net/zhenghuishengq/article/details/129544460【二】jvm的类加载子系统以及jclasslib的基本使用https://blog.csdn.net/zhenghuishengq/article/details/129610963【三】运行时私有区域之虚拟机栈…...

ctfshow愚人杯 re easy_pyc wp

一、反编译题目pyc文件 题目下载解压后是一个.pyc文件,那就去反编译看看呗,因为之前用过uncompyle6,直接去命令行执行 uncompyle6 -o ez_re.py ez_re.pyc 得到ez_re.py源码一份~ 但是这里我用uncompyle6反编译的结果不知道为啥就出来很多奇…...

Ubuntu18.04 系统中本地代码上传至Gitlab库

主要步骤如下: 设置SSH Key 上传项目 1.创建SSH Key 每次上传可重新设置一个SSH Key或者使用已有SSH Key (1)创建SSH Key 创建一个新的SSH Key,终端输入以下指令,其中 “xxxxxx163.com” 是邮箱账号: s…...

Leetcode.1665 完成所有任务的最少初始能量

题目链接 Leetcode.1665 完成所有任务的最少初始能量 Rating : 1901 题目描述 给你一个任务数组 tasks,其中 tasks[i] [actuali, minimumi]: actuali是完成第 i 个任务 需要耗费 的实际能量。minimumi是开始第 i 个任务前需要达到的最低能…...

【C++笔试强训】第一天

选择题 解析&#xff1a;在for循环的循环条件(y 123) && (x < 4)中 &#xff0c;&& 表示逻辑与&#xff0c;从左向右判断两边条件是否成立&#xff0c;只有当两边的条件都为真时&#xff0c;这条语句才为真。左边y 123是赋值语句&#xff0c;一直为真&…...

【网络安全软件】上海道宁与Cybereason为您提供未雨绸缪的攻击保护,终结对端点、整个企业以及网络上任何角落的网络攻击

Cybereason可收集 计算机网络内任何活动方面的数据 如运行当中的程序 被用户访问的文件以及 员工及任何获授权使用网络中的计算机人的 键盘输入和鼠标移动情况 Cybereason提供 即时结束网络攻击的精确度 在计算机、移动设备、服务器和云中 到战斗移动的任何地方 一、开…...

基于RK3568的Android11 适配 MIPI 屏幕

文章目录 前言一、mipi接口是什么?二、原理图三、屏幕点亮流程四、屏幕关键参数1.General Specification2. Power on/off sequence3.Timing五、屏幕初始化序列改写如何把原厂给的数据转换为设备需要的时序dcs小知识:初始化时序:退出时序:总结前言 在本小节会学习到如何适配…...

Ubuntu安装python

CentOS 安装 Python3 没什么坑&#xff0c;按照步骤一步步来就可以了。 但 Ubuntu 安装 Python3 的坑却不少&#xff0c;这里总结一下&#xff0c;避免以后继续踩坑。 我用的是 ubuntu16.04&#xff0c;安装最新版本的 Python3.8.3 第1步&#xff1a;安装编译环境 安装之前…...

django 运用pycharm的各种故障汇总(1)

一.用django入门第一个问题:pycharm的[community]社区版-免费开源与[professional]专业版注册收费两个版本:用django只能有[professional]版本便捷、专业; 解决方案的各种学习总结: 1.破解版:网上找了很多资料,基本已经没效果,不要报太大希望; 2.找中间途径然后有:Python 、…...

【设计模式】单例模式Singleton(Java)

文章目录定义类图Java经典实现懒汉Lazy Mode&#xff1a;饿汉Eager Mode&#xff1a;在饿汉下的多线程案例在懒汉下的多线程案例总结定义 单例模式&#xff08;单件模式&#xff09;确保一个类只有一个实例&#xff0c;并提供一个全局访问点。——HeadFirst 单例模式通过过防…...

机器学习中的公平性

文章目录机器学习公平性评估指标群体公平性指标个人公平性指标引起机器学习模型不公平的潜在因素提升机器学习模型公平性的措施机器学习公平性 定义&#xff1a; 机器学习公平性主要研究如何通过解决或缓解“不公平”来增加模型的公平性&#xff0c;以及如何确保模型的输出结果…...

Docker镜像之Docker Compose讲解

文章目录1 docker-compose1.1 compose编排工具简介1.2 安装docker-compose1.3 编排启动镜像1.4 haproxy代理后端docker容器1.5 安装socat 直接操作socket控制haproxy1.6 compose中yml 配置指令参考1.6.1 简单命令1.6.2 build1.6.3 depends_on1.6.4 deploy1.6.5 logging1.6.6 ne…...

蓝桥杯30天真题冲刺|题解报告|第三十天

大家好&#xff0c;我是snippet&#xff0c;今天是我们这次蓝桥省赛前一起刷题的最后一天了&#xff0c;今天打了一场力扣周赛&#xff0c;前面3个题都是有思路的&#xff0c;第三个题只过了一半的案例&#xff0c;后面看完大佬们的题解彻悟&#xff0c;下面是我今天的题解 目录…...

配置 Git Husky 代码提交约束

介绍 Git Husky 是一个可以管理 Git Hooks 的工具&#xff0c;它可以帮助我们在代码提交的时候运行脚本&#xff0c;以确保代码提交符合特定的规范和约定。 在 Git 中&#xff0c;允许在操作特定的事件时执行特定的脚本&#xff0c;这些事件我们称之为 Hooks。 Git Husky 利…...

IntelliJ IDEA 2023.1 最新变化

文章目录IntelliJ IDEA 2023.1 最新变化一. 主要更新1. 新 UI 增强 测试版启用新 UI2. 在项目打开时更早提供 IDE 功能3. 更快地导入 Maven 项目4.后台提交检查5. Spring Security 匹配器和请求映射的导航 Ultimate二. 用户体验1. 全 IDE 缩放2. 保存多个工具窗口布局的选项3. …...

stm32学习笔记-9 USART串口

9 USART串口 文章目录9 USART串口9.1 串口通信协议9.2 stm32的片上外设-USART9.3 USART收发相关实验9.3.1 实验1&#xff1a;串口发送9.3.2 实验2&#xff1a;移植printf函数9.3.3 实验3&#xff1a;串口发送接收9.4 USART串口数据包9.5 USART数据包相关实验9.5.1 实验1&#x…...

【蓝桥杯】每日四道编程题(两道真题+两道模拟)| 第四天

专栏&#xff1a; 蓝桥杯——每日四道编程题&#xff08;两道真题两道模拟&#xff09; “蓝桥杯就要开始了&#xff0c;这些题刷到就是赚到” ₍ᐢ..ᐢ₎♡ 另一个专栏&#xff1a; 蓝桥杯——每日四道填空题&#xff08;两道真题两道模拟题&#xff09; 目录 专栏&#xff1…...

大家有没有时候觉得,递归,分治,回溯,傻傻分不清楚?

递归&#xff0c;分治&#xff0c;回溯的定义 递归&#xff08;Recursion&#xff09; 递归是一种解决问题的方法&#xff0c;它将一个问题分解成一个或多个较小的相同类型的子问题&#xff0c;然后通过递归调用自身来解决这些子问题。递归通常包括一个基本情况&#xff08;b…...

Java 8 - Lambda 表达式

1. 函数式接口 当一个接口中只有一个非 default 修饰的方法&#xff0c;这个接口就是一个函数式接口用 FunctionalInterface 标注 1&#xff09;只有一个抽象方法 FunctionalInterface public interface MyInterface {void print(int x); } 2&#xff09;只有一个抽象方法和…...

css实现圆环展示百分比,根据值动态展示所占比例

代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中&#xff0c;高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术&#xff0c;实现年省电费15%-60%&#xff0c;且不改动原有装备、安装快捷、…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件&#xff08;System Property Definition File&#xff09;&#xff0c;用于声明和管理 Bluetooth 模块相…...

linux 下常用变更-8

1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行&#xff0c;YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID&#xff1a; YW3…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...