昇思MindSpore进阶教程--下沉模式
大家好,我是刘明,明志科技创始人,华为昇思MindSpore布道师。
技术上主攻前端开发、鸿蒙开发和AI算法研究。
努力为大家带来持续的技术分享,如果你也喜欢我的文章,就点个关注吧
正文开始
昇腾芯片集成了AICORE和AICPU等计算单元。其中AICORE负责稠密Tensor和Vector运算,AICPU负责复杂控制逻辑的处理。
为充分发挥昇腾芯片的运算、逻辑控制和任务分发能力,MindSpore提供了数据图下沉、图下沉和循环下沉功能,极大地减少Host-Device交互开销,有效地提升训练与推理的性能。MindSpore的计算图包含网络算子以及算子间的依赖关系。
从用户的视角来看,网络训练的流程如下:

本教程以训练的执行流程为例介绍数据下沉、图下沉和循环下沉的原理和使用方法。
数据下沉
为了提升网络的执行性能,通常使用专用芯片来执行算子,一个芯片对应一个Device,Host与Device的一般交互流程如下:

由上图可见,每个训练迭代都需要从Host拷贝数据到Device,可通过数据下沉消除Host和Device间拷贝输入数据的开销。
使能数据下沉后,MindSpore会在Device侧创建专门的数据缓存队列,MindSpore数据处理引擎使用高性能数据通道将数据的预处理结果发送到Device的数据队列上,计算图通过GetNext算子直接从数据队列拷贝输入数据,Host向数据队列发送数据和计算图从数据队列读取数据形成流水并行,执行当前迭代的同时可向数据队列发送下一个迭代的数据,从而隐藏了Host-Device数据拷贝的开销,MindSpore高性能数据处理引擎的原理参考这里。
GPU后端和昇腾后端都支持数据下沉,GPU数据下沉的Host-Device交互流程如下:

用户可通过train接口的dataset_sink_mode控制是否使能数据下沉。
图下沉
一般情况下,每个训练迭代都需要下发并触发device上每个算子的执行,Host与Device交互频繁。
为减少Host与Device的交互,在图编译时,将网络中的算子打包并一起下发到device,每次迭代只触发一次计算图的执行即可,从而提升网络的执行效率。

GPU后端暂不支持图下沉;使用昇腾设备时,开启数据下沉会同时启用图下沉。
循环下沉
启用数据下沉和图下沉后,每个迭代的计算结果都会返回Host,并由Host判断是否需要进入下一个迭代,为减少每个迭代的Device-Host交互,可以将进入下一个迭代的循环判断下沉到Device,这样等所有迭代执行完成后再将计算结果返回到Host。循环下沉的Host-Device交互流程如下:

用户通过train接口的dataset_sink_mode和sink_size参数控制每个epoch的下沉迭代数量,Device侧连续执行sink_size个迭代后才返回到Host。
使用方法
Model.train实现数据下沉
Model的train接口参数dataset_sink_mode可以控制数据是否下沉。dataset_sink_mode为True表示数据下沉,否则为非下沉。所谓下沉即数据通过通道直接传送到Device上。
dataset_sink_mode参数可以配合sink_size控制每个epoch下沉的数据量大小。当dataset_sink_mode设置为True,即数据下沉模式时:
如果sink_size为默认值-1,则每一个epoch训练整个数据集,理想状态下下沉数据的速度快于硬件计算的速度,保证处理数据的耗时隐藏于网络计算时间内;
如果sink_size>0,此时原始数据集可以被无限次遍历,下沉数据流程仍与sink_size=-1相同,不同点是每个epoch仅训练sink_size大小的数据量,如果有LossMonitor,那么会训练sink_size大小的数据量就打印一次loss值,下一个epoch继续从上次遍历的结束位置继续遍历。
下沉的总数据量由epoch和sink_size两个变量共同控制,即总数据量=epoch*sink_size。
当使用LossMonitor、TimeMonitor或其它Callback接口时,如果dataset_sink_mode设置为False,Host侧和Device侧之间每个step交互一次,所以会每个step返回一个结果,如果dataset_sink_mode为True,因为数据在Device上通过通道传输,Host侧和Device侧之间每个epoch进行一次数据交互,所以每个epoch只返回一次结果。
相关文章:
昇思MindSpore进阶教程--下沉模式
大家好,我是刘明,明志科技创始人,华为昇思MindSpore布道师。 技术上主攻前端开发、鸿蒙开发和AI算法研究。 努力为大家带来持续的技术分享,如果你也喜欢我的文章,就点个关注吧 正文开始 昇腾芯片集成了AICORE和AICPU等…...
Hive SQL业务场景:连续5天涨幅超过5%股票
一、需求描述 现有一张股票价格表 dwd_stock_trade_dtl 有3个字段分别是: 股票代码(stock_code), 日期(trade_date), 收盘价格(closing_price) 。 请找出满足连续5天以上(含)每天上涨超过5%的股票,并给出连续满足…...
Java 如何从图片上提取文字
生活中我们可能会遇到想从图片上直接复制上边的文字,该如何获取呢,接下来看看如何使用Java程序实现从图片中读取文字。 实现过程 1、引入Tess4J 依赖 <!--Tess4J 依赖--> <dependency><groupId>net.sourceforge.tess4j</groupId…...
C#进阶-读写Excel常用框架及其使用方式
目录 一、MiniExcel开源框架(推荐) 1、写/导出 方式一 方式二 多表创建 更改配置 特性使用 CSV尾行新增行 CSV、XLSX互转 2、读/导入 简单示例 二、NPOI开源框架 一、MiniExcel开源框架(推荐) 添加NuGet包MiniExcel…...
Python爬虫lxml模块安装导入和xpath基本语法
lxml模块是Python的一个解析库,主要用于解析HTML和XML文件。 一、安装导入 使用包管理器安装,在cmd下或编辑器下的控制台,运行: pip install lxml 导入: from lxml import etree 二、xpath基础知识 XPath&#…...
python魔法(python高级magic方法进阶)
python特殊方法(magic方法也叫魔术方法) 魔法方法是python的内置函数,一般以双下划线开头和结尾, 构造和初始化 每个人都知道一个最基本的魔术方法, init 。 通过此方法我们可以定义一个对象的初始操作。 然而,当我调用 x S…...
【论文笔记】Flamingo: a Visual Language Model for Few-Shot Learning
🍎个人主页:小嗷犬的个人主页 🍊个人网站:小嗷犬的技术小站 🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。 基本信息 标题: Flamingo: a Visual Langu…...
问:JAVA阻塞队列实现类及最佳实践?
在多线程编程中,阻塞队列作为一种关键的数据结构,为线程间安全、高效的数据交换提供了重要支持。Java的java.util.concurrent包中提供了多种阻塞队列的实现,每种实现都有其独特的特点和适用场景。 一、阻塞队列实现类 以下是Java中Blocking…...
Springboot3 + MyBatis-Plus + MySql + Vue + ProTable + TS 实现后台管理商品分类(最新教程附源码)
Springboot3 MyBatis-Plus MySql Uniapp 商品加入购物车功能实现(针对上一篇sku) 1、效果展示2、数据库设计3、后端源码3.1 application.yml 方便 AliOssUtil.java 读取3.2 model 层3.2.1 BaseEntity3.2.1 GoodsType3.2.3 GoodsTypeSonVo3.3 Controll…...
消费电子制造企业如何使用SAP系统提升运营效率与竞争力
在当今这个日新月异的消费电子市场中,企业面临着快速变化的需求、激烈的竞争以及不断攀升的成本压力。为了在这场竞赛中脱颖而出,消费电子制造企业纷纷寻求数字化转型的突破点,其中,SAP系统作为业界领先的企业资源规划(ERP)解决方…...
算法记录——树
二叉树 3.1二叉树的最大深度 思路:二叉树的最大深度 根节点的最大高度。因此本题可以转换为求二叉树的最大高度。 而求高度的时候应该采用后序遍历。遍历顺序为:左右中。每次遍历的节点按后序遍历顺序,先收集左右孩子的最大高度,…...
单片机在控制和自动化任务中的应用场景广泛
单片机在控制和自动化任务中的应用场景广泛,以下是一些具体示例: 1. 家电控制 洗衣机:单片机用于控制洗衣周期、温度和水位。微波炉:控制加热时间、功率和用户界面。 2. 工业自动化 生产线监控:单片机用于控制传送…...
UEFI EDK2框架学习(三)——protocol
一、Protocol协议 搜索支持特定Protocol的设备,获取其Handle gBS->LocateHandleBuffer 将内存中的Driver绑定到给定的ControllerHandle gBS->OpenProtocol 二、代码实现 Protocol.c #include <Uefi.h> #include <Library/UefiLib.h> #includ…...
PostgreSQL的字段存储类型了解
PostgreSQL的字段存储类型了解 在 PostgreSQL 中,每个字段(列)都有其存储类型,这些存储类型决定了数据库如何存储和处理该字段的数据。了解和适当地利用这些存储类型,可以提高数据库的性能和存储效率。 主要的存储类…...
CTFshow 命令执行 web29~web36(正则匹配绕过)
目录 web29 方法一:include伪协议包含文件读取 方法二:写入文件 方法三:通识符 web30 方法一:filter伪协议文件包含读取 方法二:命令执行函数绕过 方法三:写入文件 web31 方法一:filter伪…...
【顺序表使用练习】发牌游戏
【顺序表使用练习】发牌游戏 1. 介绍游戏2. 实现52张牌3. 实现洗牌4. 实现发牌5. 效果展示 1. 介绍游戏 首先先为大家介绍一下设计要求 实现52张牌(这里排除大小王)洗牌——打乱牌的顺序发牌——3个人,1人5张牌 2. 实现52张牌 创建Code对象创…...
1.7 编码与调制
欢迎大家订阅【计算机网络】学习专栏,开启你的计算机网络学习之旅! 文章目录 前言前言1 基本术语2 常用的编码方法2.1 不归零编码2.2 归零编码2.3 反向归零编码2.4 曼彻斯特编码2.5 差分曼彻斯特编码 3 常用的调制方法3.1 调幅(AM)…...
004集—— txt格式坐标写入cad(CAD—C#二次开发入门)
如图所示原始坐标格式,xy按空格分开,将坐标按顺序在cad中画成多段线: 坐标xy分开并按行重新输入txt,效果如下: 代码如下 : using Autodesk.AutoCAD.DatabaseServices; using Autodesk.AutoCAD.Runtime; us…...
CSS中的font-variation-settings:探索字体的可变性
随着Web字体的发展,设计师们不再局限于传统的字体样式。现代Web字体支持可变字体(Variable Fonts),这种字体允许开发者在单一的字体文件中包含多种字形样式。通过使用CSS中的font-variation-settings属性,我们可以控制…...
组合优化与凸优化 学习笔记5 对偶拉格朗日函数
有的时候约束条件有点难搞,我们可以把它放到目标函数里面。 记得之前凸函数的时候的结论吗?一大堆函数,每一段都取最大的,最后会得到一个凸函数。同理,每一段都取最小的,得到的是一个凹函数。就这样&#x…...
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
Java入门学习详细版(一)
大家好,Java 学习是一个系统学习的过程,核心原则就是“理论 实践 坚持”,并且需循序渐进,不可过于着急,本篇文章推出的这份详细入门学习资料将带大家从零基础开始,逐步掌握 Java 的核心概念和编程技能。 …...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...
LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》
这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...
【 java 虚拟机知识 第一篇 】
目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...
【SpringBoot自动化部署】
SpringBoot自动化部署方法 使用Jenkins进行持续集成与部署 Jenkins是最常用的自动化部署工具之一,能够实现代码拉取、构建、测试和部署的全流程自动化。 配置Jenkins任务时,需要添加Git仓库地址和凭证,设置构建触发器(如GitHub…...
