当前位置: 首页 > news >正文

Python Pandas数据处理效率提升指南

大家好,在数据分析中Pandas是Python中最常用的库之一,然而当处理大规模数据集时,Pandas的性能可能会受到限制,导致数据处理变得缓慢。为了提升Pandas的处理速度,可以采用多种优化策略,如数据类型优化、向量化操作、并行处理、分块读取等。本文将介绍几种常见的Pandas性能优化方法,帮助高效处理大量数据,减少计算时间。

1.数据类型优化

Pandas在读取数据时,会自动为每列选择默认的数据类型,但这些默认类型可能不是最优的。通过手动优化数据类型,可以显著减少内存占用,从而提高性能。常见的优化方法包括将int64转为int32、将float64转为float32,以及将字符串列转换为category类型。

import pandas as pd
import numpy as np# 生成示例数据
data = {'id': np.random.randint(1, 100000, 1000000),'value': np.random.rand(1000000),'category': np.random.choice(['A', 'B', 'C'], 1000000)
}df = pd.DataFrame(data)
print("优化前内存使用:")
print(df.info())# 优化数据类型
df['id'] = df['id'].astype('int32')  # 将int64转为int32
df['value'] = df['value'].astype('float32')  # 将float64转为float32
df['category'] = df['category'].astype('category')  # 将字符串列转为categoryprint("\n优化后内存使用:")
print(df.info())

通过这段代码可以看到,优化后的数据类型显著减少了内存占用。对于大数据集,内存的减少意味着可以在同一时间处理更多数据,进而提升性能。

2.使用read_csv的优化选项

在读取大型CSV文件时,Pandas的read_csv()函数可以通过合理设置参数来提高读取速度。例如,指定数据类型、仅选择需要的列、分块读取数据等,可以有效优化内存使用,并提升数据读取的效率。

# 优化读取CSV文件
df = pd.read_csv('large_data.csv', dtype={'id': 'int32', 'value': 'float32'}, usecols=['id', 'value'], chunksize=100000)for chunk in df:print(chunk.head())  # 每次读取10万行数据并处理
  • dtype参数:指定数据类型以减少内存使用。

  • usecols参数:只选择需要的列,避免不必要的数据加载。

  • chunksize参数:分块读取大文件,避免一次性加载过多数据,防止内存溢出。

通过这些优化选项,可以显著提高大数据集的读取速度。

3.向量化操作代替循环

Pandas允许使用向量化操作处理数据,而非逐行遍历。在向量化操作中,Pandas会利用底层的C语言进行优化运算,比使用Python的for循环或apply()函数快得多。

# 逐行处理:较慢
df['new_value'] = df['value'].apply(lambda x: x * 2)# 向量化操作:更快
df['new_value'] = df['value'] * 2

在上述代码中,使用向量化操作进行批量处理,比逐行调用apply()更快。在处理大数据集时,向量化操作能大幅提高运算速度。

4.并行处理加速计算

在面对极大规模数据集时,单线程处理可能不足以应对复杂的运算需求。Pandas本身不支持并行处理,但可以借助第三方库如DaskSwifter来实现并行计算,加速数据处理。

Dask是一种可以与Pandas兼容的并行计算库,它能够处理超出内存限制的大数据集,并利用多核处理器进行并行计算。

import dask.dataframe as dd# 使用Dask读取大数据集
df = dd.read_csv('large_data.csv')# 执行并行计算
result = df['value'].mean().compute()  # 计算均值
print("并行计算结果:", result)

Dask通过并行处理提升了Pandas处理大数据的能力,非常适合超大规模数据集的处理。

Swifter是另一个加速Pandas apply()函数的库,它可以自动判断数据量,选择最优的处理方式(单线程或并行处理)。

import swifter# 使用Swifter加速apply操作
df['new_value'] = df['value'].swifter.apply(lambda x: x * 2)

Swifter能够自动优化数据处理过程,帮助在处理大量数据时提升效率。

5.分块处理大数据

在处理非常大的数据集时,一次性将数据全部加载到内存中可能会导致内存溢出问题,此时分块处理大数据是一种有效的解决方案。Pandas的chunksize参数可以分块读取数据,并逐块处理。

chunk_size = 100000  # 每次处理10万行数据
chunks = pd.read_csv('large_data.csv', chunksize=chunk_size)for chunk in chunks:# 对每个块进行处理chunk['new_value'] = chunk['value'] * 2print(chunk.head())

通过分块处理数据,可以在有限的内存中处理大规模数据集,而不必一次性加载整个数据集。

6.数据库读取优化

当从数据库中读取数据时,Pandas提供了与SQL数据库对接的功能。为了优化读取速度,可以通过SQL查询进行过滤,避免加载不必要的数据。

import sqlite3# 连接到SQLite数据库
conn = sqlite3.connect('database.db')# 使用SQL查询过滤数据
query = "SELECT id, value FROM data_table WHERE value > 100"
df = pd.read_sql_query(query, conn)print(df.head())

通过在SQL查询中进行数据过滤,可以显著减少传输的数据量,提升从数据库读取数据的效率。

7.缓存与数据持久化

当需要反复读取相同的数据时,将数据持久化或使用缓存机制能够显著提高效率。Pandas支持将数据保存为featherparquet格式,这些格式读写速度比CSV快得多,适合大规模数据集的持久化存储。

# 保存数据到feather文件
df.to_feather('data.feather')# 从feather文件中快速读取数据
df = pd.read_feather('data.feather')
print(df.head())

通过将数据保存为高效的二进制格式,可以显著加快读取速度,特别是在需要频繁读取相同数据的情况下。

这些优化方法适用于处理大规模数据集,优化数据类型可以减少内存占用,加速数据加载和处理。利用read_csv函数的优化参数,能够加快从文件读取数据的速度。借助DaskSwifter等库实现并行处理,能够充分利用多核CPU,对于超大数据集,分块读取数据则是解决内存问题的有效方案。使用高效的featherparquet格式持久化数据,可以显著提升数据读取速度,有效提升Pandas在数据分析中的性能。

相关文章:

Python Pandas数据处理效率提升指南

大家好,在数据分析中Pandas是Python中最常用的库之一,然而当处理大规模数据集时,Pandas的性能可能会受到限制,导致数据处理变得缓慢。为了提升Pandas的处理速度,可以采用多种优化策略,如数据类型优化、向量…...

最大正方形 Python题解

最大正方形 题目描述 在一个 n m n\times m nm 的只包含 0 0 0 和 1 1 1 的矩阵里找出一个不包含 0 0 0 的最大正方形,输出边长。 输入格式 输入文件第一行为两个整数 n , m ( 1 ≤ n , m ≤ 100 ) n,m(1\leq n,m\leq 100) n,m(1≤n,m≤100),接…...

ubuntu中软件的进程管理-结束软件运行

在Ubuntu系统中,当某个运行中的软件无法正常退出时,可以通过以下几种方法强制结束该软件: 方法一:使用系统监视器(System Monitor)–小白专属 这个相当于win上的资源管理器 打开系统监视器 可以通过点击屏…...

Windows环境部署Oracle 11g

Windows环境部署Oracle 11g 1.安装包下载2. 解压安装包3. 数据库安装3.1 执行安装脚本3.2 电子邮件设置3.3 配置安装选项3.4 配置系统类3.5 选择数据库安装类型3.6 选择安装类型3.7 数据库配置3.8 确认安装信息3.9 设置口令 Oracle常用命令 2023年10月中旬就弄出大致的文章&…...

C语言进阶【8】--联合体和枚举(联合体和枚举这么好用,你不想了解一下吗?)

本章概述 联合体类型的声明联合体的特点联合体的大小的计算枚举类型的声明枚举类型的优点枚举类型的使用枚举类型的大小彩蛋时刻!!! 联合体类型的声明 概述:联合体的关键字为 union。它的结构和结构体是一样的。进行展示&#xf…...

Android OTA升级

针对Android系统OTA升级,MTK平台有相关介绍文档:https://online.mediatek.com/apps/faq/detail?faqidFAQ27117&listSW 概念一:OTA包的构建 AOSP full build:Android原生提供的全量包的构建,意思就是可以从任何一…...

【项目经验分享】深度学习自然语言处理技术毕业设计项目案例定制

以下毕业设计是与深度学习自然语言处理(NLP)相关的毕业设计项目案例,涵盖文本分类、生成式模型、语义理解、机器翻译、对话系统、情感分析等多个领域: 实现案例截图: 基于深度学习的文本分类系统基于BERT的情感分析系…...

一觉醒来,YOLO11 冷不丁就来了

🥇 版权: 本文由【墨理学AI】原创首发、各位读者大大、敬请查阅、感谢三连 🎉 声明: 作为全网 AI 领域 干货最多的博主之一,❤️ 不负光阴不负卿 ❤️ 文章目录 前言:一觉醒来,YOLO11 冷不丁就来了ultralytics 版本更新…...

智能编辑器、版本控制与自动化脚本

在繁忙的工作中,每个开发者都渴望拥有一个“秘密武器”,帮助自己提升效率、减少错误,从而更快地完成任务。那么,在众多编程工具中,哪一款能够成为你的工作效率翻倍的“秘密武器”呢?本文将探讨智能的代码编…...

jenkinsfile实现镜像构建、发布

实现代码打包编译 容器镜像构建 jenkins编译采用docker构建。 遇到问题: 1.需要限制docker 容器的内存和cpu docker { image ‘ccr.ccs.tencentyun.com/libary/maven:3.6.3-jdk-8’ args “-v ${WORKSPACE}:/workspace --memory‘2048m’ --cpus‘1’” } 2.jenkins构建需要限制…...

OSPF路由计算

关于OSPF路由的基础概述可以看看这篇博客 动态路由---OSPF协议基础https://blog.csdn.net/ZZZCY2003/article/details/141335261 区域内路由计算 LSA概述 LSA是OSPF进行路由计算的关键依据OSPF的LSU报文可以携带多种不同类型的LSA各种类型的LSA拥有相同的报文头部 重要字段解…...

【设计模式-迭代】

定义 迭代器模式(Iterator Pattern)是一种行为型设计模式,用于提供一种顺序访问集合对象元素的方式,而不暴露该对象的内部表示。通过迭代器,客户端可以在不需要了解集合实现的细节的情况下遍历集合中的元素。 UML图 …...

k8s搭建双主的mysql8集群---无坑

《k8s搭建一主三从的mysql8集群---无坑-CSDN博客》通过搭建一主三从,我们能理解到主节点只有1个,那么承担增删改主要还是主节点,如果你在从节点上去操作增删改操作,数据不会同步到其他节点。本章我们将实现多主(双主&a…...

Iterm2配置主题和Oh-My-Zsh

文章目录 一、配置主题1.1 安装使用git1.2 安装手册1.2.1 激活使用主题 二、配置oh-my-zsh2.1、oh-my-zsh插件2.2、oh-my-zsh主题 [Zsh](http://zsh.org/)2.2.1、Install using Git2.2.2、Install manually2.2.3、Activating theme2.2.4、Install using [zplug](https://github…...

html+css+js实现step进度条效果

实现效果 代码实现 HTML部分 <div class"box"><ul class"step"><li class"circle actives ">1</li><li class"circle">2</li><li class"circle">3</li><li class&quo…...

OpenCV视频I/O(8)视频采集类VideoCapture之从视频源中读取一帧图像函数read()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 抓取、解码并返回下一个视频帧。 cv::VideoCapture::read() 是 VideoCapture 类的一个成员函数&#xff0c;用于从视频源中读取一帧图像. 该方法…...

深度学习500问——Chapter17:模型压缩及移动端部署(2)

文章目录 17.4.6 低秩分解 17.4.7 总体压缩效果评价指标有哪些 17.4.8 几种轻量化网络结构对比 17.4.9 网络压缩未来研究方向有哪些 17.5 目前有哪些深度学习模型优化加速方法 17.5.1 模型优化加速方法 17.5.2 TensorRT加速原理 17.5.3 TensorRT如何优化重构模型 17.5.4 Tensor…...

【C#】DllImport的使用

DllImport 是 C# 中用于从非托管 DLL&#xff08;动态链接库&#xff09;中导入函数的一个特性。这个特性允许你在 .NET 应用程序中调用由其他语言编写的函数&#xff0c;如 C 或 C。使用 DllImport 可以让你重用现有的非托管代码&#xff0c;而不需要重新实现这些功能。 下面…...

基于 Redis 实现滑动窗口的限流

⏳ 限流场景&#xff1a;突发流量&#xff0c;恶意流量&#xff0c;业务本身需要 基于 Redis 实现滑动窗口的限流是一种常见且高效的做法。Redis 是一种内存数据库&#xff0c;具有高性能和支持原子操作的特点&#xff0c;非常适合用来实现限流功能。下面是一个使用 Redis 实现…...

Camera Raw:打开图像

在图像工作流程中&#xff0c;无论是 Raw 格式图像文件还是 JPEG、TIFF 文件&#xff0c;都可以先使用 Camera Raw 打开并调整后&#xff0c;再进入其它 Adobe 软件如 Photoshop 中进行进一步的编辑和处理。 一、打开 Raw 格式图像 1、通过 Adobe Bridge 打开 在 Adobe Bridge …...

华为OD机试-食堂供餐-二分法

import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机&#xff08;无人驾驶飞行器&#xff0c;UAV&#xff09;技术的快速发展&#xff0c;其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统&#xff0c;无人机的“黑飞”&…...

【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制

使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下&#xff0c;限制某个 IP 的访问频率是非常重要的&#xff0c;可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案&#xff0c;使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...

libfmt: 现代C++的格式化工具库介绍与酷炫功能

libfmt: 现代C的格式化工具库介绍与酷炫功能 libfmt 是一个开源的C格式化库&#xff0c;提供了高效、安全的文本格式化功能&#xff0c;是C20中引入的std::format的基础实现。它比传统的printf和iostream更安全、更灵活、性能更好。 基本介绍 主要特点 类型安全&#xff1a…...

【SpringBoot自动化部署】

SpringBoot自动化部署方法 使用Jenkins进行持续集成与部署 Jenkins是最常用的自动化部署工具之一&#xff0c;能够实现代码拉取、构建、测试和部署的全流程自动化。 配置Jenkins任务时&#xff0c;需要添加Git仓库地址和凭证&#xff0c;设置构建触发器&#xff08;如GitHub…...

认识CMake并使用CMake构建自己的第一个项目

1.CMake的作用和优势 跨平台支持&#xff1a;CMake支持多种操作系统和编译器&#xff0c;使用同一份构建配置可以在不同的环境中使用 简化配置&#xff1a;通过CMakeLists.txt文件&#xff0c;用户可以定义项目结构、依赖项、编译选项等&#xff0c;无需手动编写复杂的构建脚本…...

xmind转换为markdown

文章目录 解锁思维导图新姿势&#xff1a;将XMind转为结构化Markdown 一、认识Xmind结构二、核心转换流程详解1.解压XMind文件&#xff08;ZIP处理&#xff09;2.解析JSON数据结构3&#xff1a;递归转换树形结构4&#xff1a;Markdown层级生成逻辑 三、完整代码 解锁思维导图新…...