当前位置: 首页 > news >正文

OpenCV-指纹识别

文章目录

  • 一、意义
  • 二、代码实现
    • 1.计算匹配点
    • 2.获取编号
    • 3.获取姓名
    • 4.主函数
  • 三、总结

一、意义

使用OpenCV进行指纹识别是一个复杂且挑战性的任务,因为指纹识别通常需要高精度的特征提取和匹配算法。虽然OpenCV提供了多种图像处理和计算机视觉的工具,但直接使用OpenCV的内置功能(如SIFT、SURF、ORB等特征检测器)进行指纹识别可能并不总是足够有效。

二、代码实现

1.计算匹配点

import os  
import cv2
def getNum(src, model):  # 读取两个指纹图像  img1 = cv2.imread(src)  img2 = cv2.imread(model)  # 创建 SIFT 特征检测器  sift = cv2.SIFT_create()  # 检测特征点和计算特征描述符  kp1, des1 = sift.detectAndCompute(img1, None)  kp2, des2 = sift.detectAndCompute(img2, None)  # 创建 FLANN 匹配器  flann = cv2.FlannBasedMatcher()  # 使用 KNN 算法找到最佳的两个匹配项  matches = flann.knnMatch(des1, des2, k=2)  # 存储好的匹配项  ok = []  for m, n in matches:  # 根据 Lowe's ratio test 过滤匹配项  if m.distance < 0.8 * n.distance:  ok.append(m)  # 返回好的匹配项的数量  num = len(ok)  return num

定义一个用于计算两个指纹图像之间匹配特征点数量的函数。这个函数使用了OpenCV库中的SIFT(Scale-Invariant Feature Transform,尺度不变特征变换)特征检测器和FLANN(Fast Library for Approximate Nearest Neighbors,快速近似最近邻)匹配器。通过计算两个指纹图像之间匹配特征点的数量来评估它们的相似性。

2.获取编号

def getID(src, database):  max_num = 0  # 初始化最大匹配点数为0  for file in os.listdir(database):  # 遍历数据库中的文件  model = os.path.join(database, file)  # 构建模型文件的完整路径  num = getNum(src, model)  # 计算当前模型与源指纹的匹配点数  print("文件名:", file, "距离:", num)  # 打印文件名和匹配点数  # 如果当前匹配点数大于最大匹配点数,则更新最大匹配点数和对应的文件名  if num > max_num:  max_num = num  name = file  # 从文件名中提取ID(这里假设文件名的第一个字符是ID)  ID = name[0] if name else None  # 如果name为空,则ID为None(这里应该添加错误处理)  # 如果最大匹配点数小于100,则将ID设置为9999(这通常不是一个好的做法,因为它可能导致混淆)  if max_num < 100 and ID is not None:  # 添加ID非空的检查  ID = 9999  return ID

定义一个从指纹数据库中识别与源指纹图像最匹配的指纹,并返回与该指纹相关联的ID。先使用 os.listdir 函数列出数据库目录中的所有文件,并构建每个文件的完整路径。调用 getNum 函数计算源指纹图像与当前模型指纹图像的匹配点数,并打印结果。如果当前匹配点数大于最大匹配点数,则更新最大匹配点数和对应的文件名。

3.获取姓名

def getName(ID):  # 定义一个字典来映射ID到姓名  nameID = {0: 'a', 1: 'b', 2: 'c', 3: 'd', 4: 'e', 5: 'f',  6: 'g', 7: 'h', 8: 'i', 9: 'j', 9999: 'k'}  # 从字典中获取姓名(如果ID不在字典中,则返回None)  name = nameID.get(int(ID))  return name

通过一个预定义的字典 nameID 来根据给定的ID获取对应的姓名。如果给定的ID不在字典中,理论上应该返回 None 或者采取其他措施来处理这种情况。

4.主函数

if __name__ == "__main__":  src = 'src.bmp'  # 源指纹图像的路径  database = 'database'  # 指纹数据库目录的路径  ID = getID(src, database)  # 获取指纹ID  name = getName(ID)  # 根据ID获取姓名  print('识别结果:', name)  # 打印识别结果

使用之前定义的 getID 和 getName 函数来识别指纹图像并打印出对应的姓名。

三、总结

该代码实现了一个简单的指纹识别系统,使用了SIFT特征和FLANN匹配器对指纹进行检测识别。但事实上我们可能遇到各种问题,所以需要根据实际应用场景对代码进行调整和优化,特别是指纹图像的预处理和特征提取部分。

相关文章:

OpenCV-指纹识别

文章目录 一、意义二、代码实现1.计算匹配点2.获取编号3.获取姓名4.主函数 三、总结 一、意义 使用OpenCV进行指纹识别是一个复杂且挑战性的任务&#xff0c;因为指纹识别通常需要高精度的特征提取和匹配算法。虽然OpenCV提供了多种图像处理和计算机视觉的工具&#xff0c;但直…...

IPD的核心思想

IPD是一套领先的、成熟的研发管理思想、模式和方法。它是根据大量成功的研发管理实践总结出来的&#xff0c;并被大量实践证明的高效的产品研发模式。 那么&#xff0c;按照IPD来开展产品研发与产品管理工作&#xff0c;应该基于哪些基本思想或原则&#xff1f;市场导向、客户…...

如何在算家云搭建MVSEP-MDX23(音频分离)

一、MVSEP-MDX23简介 模型GitHub网址&#xff1a;MVSEP-MDX23-music-separation-model/README.md 在 main ZFTurbo/MVSEP-MDX23-音乐分离模型 GitHub 上 在音视频领域&#xff0c;把已经发布的混音歌曲或者音频文件逆向分离一直是世界性的课题。音波混合的物理特性导致在没有…...

常用的Java安全框架

Spring Security&#xff1a; 就像Java安全领域的“瑞士军刀”&#xff0c;功能全面且强大。 支持认证、授权、加密、会话管理等安全功能。 与Spring框架无缝集成&#xff0c;使用起来特别方便。 社区活跃&#xff0c;文档丰富&#xff0c;遇到问题容易找到解决方案。 Apach…...

使用 PHP 的 strip_tags函数保护您的应用安全

在现代 web 开发中&#xff0c;处理用户输入是一项常见的任务。然而&#xff0c;用户输入的内容往往包含 HTML 或 PHP 标签&#xff0c;这可能会导致安全漏洞&#xff0c;如跨站脚本攻击&#xff08;XSS&#xff09;。为了解决这个问题&#xff0c;PHP 提供了一个非常有用的函数…...

您的计算机已被Lockbit3.0勒索病毒感染?恢复您的数据的方法在这里!

导言 在数字化时代&#xff0c;互联网已成为我们生活、工作和学习中不可或缺的一部分。然而&#xff0c;随着网络技术的飞速发展&#xff0c;网络安全威胁也日益严峻。其中&#xff0c;勒索病毒作为一种极具破坏性的网络攻击手段&#xff0c;正逐渐成为企业和个人面临的重大挑…...

经典sql题(十二)UDTF之Explode炸裂函数

1. EXPLODE: UDTF 函数 1.1 功能说明 EXPLODE 函数 是Hive 中的一种用户定义的表函数&#xff08;UDTF&#xff09;&#xff0c;用于将数组或映射结构中的复杂的数据结构每个元素拆分为单独的行。这在处理复杂数据时非常有用&#xff0c;尤其是在需要将嵌套数据“打散”以便更…...

【AIGC】ChatGPT提示词解析:如何打造个人IP、CSDN爆款技术文案与高效教案设计

博客主页&#xff1a; [小ᶻZ࿆] 本文专栏: AIGC | ChatGPT 文章目录 &#x1f4af;前言&#x1f4af;打造个人IP爆款文案提示词使用方法 &#x1f4af;CSDN爆款技术文案提示词使用方法 &#x1f4af;高效教案设计提示词使用方法 &#x1f4af;小结 &#x1f4af;前言 在这…...

【Ubuntu】Ubuntu常用命令

文章目录 网卡路由常用命令&#xff1a;编辑文件echo 权限设置gcc编译器&#xff1a; 重启网络服务 sudo service network-manager restart 网卡 #查看网卡信息 ip a #区分光网卡电网卡 sudo lshw -class network -businfo ifconfig ifconfig eth1 192.168.1.12/24 #重启网卡…...

架构设计笔记-5-软件工程基础知识-2

知识要点 构件组装是将库中的构件经适当修改后相互连接,或者将它们与当前开发项目中的软件元素连接,最终构成新的目标软件。 构件组装技术大体可分为: 1. 基于功能的组装技术:基于功能的组装技术采用子程序调用和参数传递的方式将构件组装起来。它要求库中的构件以子程序…...

[网络]抓包工具介绍 tcpdump

一、tcpdump tcpdump是一款基于命令行的网络抓包工具&#xff0c;可以捕获并分析传输到和从网络接口流入和流出的数据包。 1.1 安装 tcpdump 通常已经预装在大多数 Linux 发行版中。如果没有安装&#xff0c;可以使用包管理器 进行安装。例如 Ubuntu&#xff0c;可以使用以下…...

基于STM32和FPGA的射频数据采集系统设计流程

一、项目概述 高速采集射频&#xff08;RF&#xff09;信号是一个关键的需求。本文旨在设计一种基于STM32和FPGA的射频数据采集系统&#xff0c;以实现对接收到的射频信号的高精度和高速度的处理。该系统适用于无线通信、信号分析、雷达系统等应用场景。 技术栈关键词&#x…...

自动变速箱系统(A/T)详细解析

自动变速箱系统&#xff08;A/T&#xff09;&#xff0c;即Automatic Transmission&#xff0c;是一种能够在车辆行驶过程中自动完成换挡操作的传动系统。以下是对自动变速箱系统&#xff08;A/T&#xff09;的详细解析&#xff0c;内容涵盖其定义、工作原理、主要组成、类型、…...

【Kubernetes】常见面试题汇总(四十三)

目录 98. kube-apiserver 和 kube-scheduler 的作用是什么&#xff1f; 99.您对云控制器管理器了解多少&#xff1f; 特别说明&#xff1a; 题目 1-68 属于【Kubernetes】的常规概念题&#xff0c;即 “ 汇总&#xff08;一&#xff09;~&#xff08;二十二&#xff09;…...

OpenCL 学习(1)---- OpenCL 基本概念

目录 Overview异构并行计算OpenCL 架构平台模型执行模型OpenCL 上下文OpenCL 命令队列内核执行编程模型存储器模型存储器对象共享虚拟存储器 Overview OpenCL(Open Computing Language&#xff0c;开放计算语言) 最早由苹果公司提交草案&#xff0c;并于 AMD, IBM ,intel 和 n…...

自定义注解加 AOP 实现服务接口鉴权以及内部认证

注解 何谓注解&#xff1f; 在Java中&#xff0c;注解&#xff08;Annotation&#xff09;是一种特殊的语法&#xff0c;用符号开头&#xff0c;是 Java5 开始引入的新特性&#xff0c;可以看作是一种特殊的注释&#xff0c;主要用于修饰类、方法或者变量&#xff0c;提供某些信…...

《软件工程概论》作业一:新冠疫情下软件产品设计(小区电梯实体按钮的软件替代方案)

课程说明&#xff1a;《软件工程概论》为浙江科技学院2018级软件工程专业在大二下学期开设的必修课。课程使用《软件工程导论&#xff08;第6版&#xff09;》&#xff08;张海藩等编著&#xff0c;清华大学出版社&#xff09;作为教材。以《软件设计文档国家标准GBT8567-2006》…...

基于Ernie-Bot打造语音对话功能

大模型场景实战培训&#xff0c;提示词效果调优&#xff0c;大模型应用定制开发&#xff0c;点击咨询 咨询热线&#xff1a;400-920-8999转2 GPT-4的语音对话功能前段时间在网上火了一把&#xff0c;许多人被其强大的自然语言处理能力和流畅的语音交互所吸引。现在&#xff0c;…...

动手学深度学习(李沐)PyTorch 第 3 章 线性神经网络

3.1 线性回归 线性回归是对n维输入的加权&#xff0c;外加偏差 线性回归可以看作是单层神经网络 回归问题中最常用的损失函数是平方误差函数。 平方误差可以定义为以下公式&#xff1a; 常数1/2不会带来本质的差别&#xff0c;但这样在形式上稍微简单一些 &#xff08;因为当…...

ROS理论与实践学习笔记——2 ROS通信机制之服务通信

服务通信也是ROS中一种极其常用的通信模式&#xff0c;服务通信是基于请求响应模式的&#xff0c;是一种应答机制。也即: 一个节点A向另一个节点B发送请求&#xff0c;B接收处理请求并产生响应结果返回给A&#xff0c;用于偶然的、对时时性有要求、有一定逻辑处理需求的数据传输…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

工程地质软件市场:发展现状、趋势与策略建议

一、引言 在工程建设领域&#xff0c;准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具&#xff0c;正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题&#xff1a;3564. 季节性销售分析 题目&#xff1a; 表&#xff1a;sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

#Uniapp篇:chrome调试unapp适配

chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器&#xff1a;Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案

目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后&#xff0c;迭代器会失效&#xff0c;因为顺序迭代器在内存中是连续存储的&#xff0c;元素删除后&#xff0c;后续元素会前移。 但一些场景中&#xff0c;我们又需要在执行删除操作…...

上位机开发过程中的设计模式体会(1):工厂方法模式、单例模式和生成器模式

简介 在我的 QT/C 开发工作中&#xff0c;合理运用设计模式极大地提高了代码的可维护性和可扩展性。本文将分享我在实际项目中应用的三种创造型模式&#xff1a;工厂方法模式、单例模式和生成器模式。 1. 工厂模式 (Factory Pattern) 应用场景 在我的 QT 项目中曾经有一个需…...

第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)

第一篇&#xff1a;Liunx环境下搭建PaddlePaddle 3.0基础环境&#xff08;Liunx Centos8.5安装Python3.10pip3.10&#xff09; 一&#xff1a;前言二&#xff1a;安装编译依赖二&#xff1a;安装Python3.10三&#xff1a;安装PIP3.10四&#xff1a;安装Paddlepaddle基础框架4.1…...

Mac flutter环境搭建

一、下载flutter sdk 制作 Android 应用 | Flutter 中文文档 - Flutter 中文开发者网站 - Flutter 1、查看mac电脑处理器选择sdk 2、解压 unzip ~/Downloads/flutter_macos_arm64_3.32.2-stable.zip \ -d ~/development/ 3、添加环境变量 命令行打开配置环境变量文件 ope…...