【车载开发系列】ParaSoft单元测试环境配置(四)
【车载开发系列】ParaSoft单元测试环境配置(四)
【车载开发系列】ParaSoft单元测试环境配置(四)
- 【车载开发系列】ParaSoft单元测试环境配置(四)
- 一. 如何设置过滤
- 二. 如何设置静态扫描的规则
- 三. 如何设置单个测试用例的超时时间
- 四. 如何获取测试用例的数量
- 五. 如何设置Gcc交叉编译器
- 步骤1:配置环境变量
- 步骤2:重新启动电脑
- 步骤3:编译器设置
- 六. 如何修改圈复杂度的阈值
一. 如何设置过滤
可以选择项目—>属性。在范围设置当中,选择添加资源,哪些资源文件想跳过,这里就可以设置了。



二. 如何设置静态扫描的规则
先从内建中将内建规则复制到自定义规则
打开静态自定义规则,可以启动规则—>启用严重度,这样就可以根据选择严重度来启动或停用响应的规则。


三. 如何设置单个测试用例的超时时间
测试配置—>Run Unit Tests当中,选择执行—>【单个的测试用例超时】之后,可以设定超时的时间。

四. 如何获取测试用例的数量
在【测试用例浏览器】当中,点击△符号,数据统计—>设置列间距—>选中【合计】以及我们想要显示的行,以后咱们就可以看到各个测试套件当中测试用例的数量了。


如果选择了简洁浏览,那么效果是以下这个样子的。

五. 如何设置Gcc交叉编译器
步骤1:配置环境变量
拿到mingw.zip,解压到固定目录,然后配置环境变量。


编辑环境变量

编译器的可执行程序都被放在了这里。

步骤2:重新启动电脑
如果环境变量正确设置的话,打开cmd画面,输入gcc指令之后就可以得到下面的信息。(注:环境变量改变之后,不重启是不会生效的)。

步骤3:编译器设置
在ParaSoft—>C/C++Test—>构建设置当中,编译器设置为【GNU GCC 9.x】(为了和之前安装的GCC版本一致)

六. 如何修改圈复杂度的阈值
首先在【用户自定义】—>【Static Analysis】—>【静态】当中,找到圈复杂度这个度量指标条目,将这个条目复制一份出来。

将复制出来的圈复杂度条目上点击右键,选择:【在RuleWizard中查看规则】,就会跳出下面的画面,这里打上红框的Count > 10就是圈复杂度。

双击这个Count,就会跳出Enter Expression画面。这个时候就可以对圈复杂度进行修改了。

修改了圈复杂度的同时,注释部分也需要同步的更新。

更改了这个规则的注释和内容之后,记得要同步刷新一下。刷新之后的情况见下面。

相关文章:
【车载开发系列】ParaSoft单元测试环境配置(四)
【车载开发系列】ParaSoft单元测试环境配置(四) 【车载开发系列】ParaSoft单元测试环境配置(四) 【车载开发系列】ParaSoft单元测试环境配置(四)一. 如何设置过滤二. 如何设置静态扫描的规则三. 如何设置单…...
IDEA 设置自动定位文件
一、场景分析 IDEA 在使用的过程中,发现有时候,打开一个类,它并不能自动帮我们在左侧 Project 树中定位出文件,需要自己手动点击 瞄准 图标。很不方便。 二、解决方法 1、点击 瞄准 图标旁边的 竖三点 2、将 Alwasy Select Opene…...
Nature Machine Intelligence 基于强化学习的扑翼无人机机翼应变飞行控制
尽管无人机技术发展迅速,但复制生物飞行的动态控制和风力感应能力,仍然遥不可及。生物学研究表明,昆虫翅膀上有机械感受器,即钟形感受器campaniform sensilla,探测飞行敏捷性至关重要的复杂气动载荷。 近日࿰…...
[Web安全 网络安全]-XXE 外部实体注入攻击XML
文章目录: 一:前言 1.定义 1.1 XXE 1.2 XML可扩展标记语言 2.DDT文档类型定义 2.1 分类 2.2 元素element DTD元素 DTD属性 2.3 实体entity DTD实体类别 DTD实体声明引用 声明:内部 外部 参数实体 公共实体 引用:…...
8--苍穹外卖-SpringBoot项目中套餐管理 详解(二)
目录 删除套餐 需求分析和设计 代码开发 根据id查询套餐 mapper层 Service层 ServiceImpl层 Mapper层 批量删除套餐 mapper层 Service层 ServiceImpl层 Mapper层 SetmealMapper.xml 修改套餐 需求分析和设计 代码开发 起售停售套餐 需求分析和设计 代码开发…...
测试面试题:pytest断言时,数据是符点类型,如何断言?
在使用 Pytest 进行断言时,如果数据是浮点类型,可以使用以下方法进行断言: 一、使用pytest.approx pytest.approx可以用来比较两个浮点数是否近似相等。例如: import pytestdef test_float_assertion():result 3.14159expecte…...
Python与MongoDB交互
一、基本概念 MongoDB: 一个面向文档的数据库系统,使用BSON(Binary JSON)作为存储格式。集合(Collection): 类似于关系型数据库中的表,是文档的集合。文档(Document): MongoDB中的基…...
安卓AI虚拟女友项目开发的Android开发环境搭建
第五章:Android开发环境搭建与基础入门 5-1 项目讲解思路说明 本文是安卓AI数字虚拟人项目实战的第五章,开发安卓AI安卓版数字虚拟人的Android基础部分。 在本章中,我们将详细介绍如何搭建Android开发环境,包括Android Studio的…...
基于SpringBoot+Vue+MySQL的智能垃圾分类系统
系统展示 用户前台界面 管理员后台界面 系统背景 随着城市化进程的加速,垃圾问题日益凸显,不仅对环境造成污染,也给城市管理带来了巨大挑战。传统的垃圾分类方式不仅费时费力,而且手工操作容易出现错误,导致垃圾分类效…...
你的个人文件管理助手:AI驱动的本地文件整理工具
🌐 引言 在数字化时代,我们经常面临文件管理的挑战。电脑中的文件杂乱无章,寻找特定文件变得既费时又费力。幸运的是,现在有了一款名为本地文件整理器的神器,它利用AI技术帮助你快速、智能地整理文件,同时…...
【PyTorch】环境配置
框架介绍 Pytorch简介 2017年1月,FAIR(Facebook AI Research)发布了PyTorch。PyTorch是在Torch基础上用python语言重新打造的一款深度学习框架。Torch是采用Lua语言作为接口的机器学习框架,但因为Lua语言较为小众,导…...
枫叶MTS格式转换器- 强大、操作简单的MTS、M2TS视频转换工具供大家学习研究参考
一款功能强大、操作简单的MTS、M2TS视频转换工具,欢迎下载使用。 使用本MTS格式转换器可以帮助您将索尼和松下等摄像机录制的MTS、M2TS格式高清视频转换为其他流行的视频格式,如MP4、3GP、AVI、MPEG、WMV、ASF、MOV、RM、VCD、SVCD、DVD、MKV、FLV、SWF、MPG、MP3、WAV、WMA…...
Vscode把全部‘def‘都收起来的快捷键
在 VSCode 中,你可以使用以下快捷键来收起所有函数定义 (def): Windows/Linux: Ctrl K, Ctrl 0macOS: Cmd K, Cmd 0 这个快捷键组合会折叠当前文件中所有的代码块(包括所有函数和类定义)。你可以通过相同的快捷键再次展开这…...
Web和UE5像素流送、通信教程
一、web端配置 首先打开Github地址:https://github.com/EpicGamesExt/PixelStreamingInfrastructure 找到自己虚幻引擎对应版本的项目并下载下来,我这里用的是5.3。 打开项目找到PixelStreamingInfrastructure-master > Frontend > implementat…...
【YOLO目标检测电梯间电动车与人数据集】共4321张、已标注txt格式、有训练好的yolov5的模型
目录 说明图片示例 说明 数据集格式:YOLO格式 图片数量:4321 标注数量(txt文件个数):4321 标注类别数:2 标注类别名称:person、electricBicycle 数据集下载:电梯间电动车与人数据集 图片示例 数据…...
【网络安全】公钥基础设施
1. PKI 定义 1.1 公钥基础设施的概念 公钥基础设施(Public Key Infrastructure,简称PKI)是一种基于公钥密码学的系统,它提供了一套完整的解决方案,用于管理和保护通过互联网传输的信息。PKI的核心功能包括密钥管理、…...
云原生(四十一)| 阿里云ECS服务器介绍
文章目录 阿里云ECS服务器介绍 一、云计算概述 二、什么是公有云 三、公有云优缺点 1、优点 2、缺点 四、公有云品牌 五、市场占有率 六、阿里云ECS概述 七、阿里云ECS特点 阿里云ECS服务器介绍 一、云计算概述 云计算是一种按使用量付费的模式,这种模式…...
计算机网络:计算机网络体系结构 —— OSI 模型 与 TCP/IP 模型
文章目录 计算机网络体系结构OSI 参考模型TCP/IP 参考模型分层的必要性物理层的主要问题数据链路层的主要问题网络层的主要问题运输层的主要问题应用层的主要问题 分层思想的处理方法发送请求路由器转发接受请求发送响应接收响应 计算机网络体系结构 计算机网络体系结构是指将…...
【openwrt-21.02】T750 openwrt switch划分VLAN之后网口插拔状态异常问题分析及解决方案
Openwrt版本 NAME="OpenWrt" VERSION="21.02-SNAPSHOT" ID="openwrt" ID_LIKE="lede openwrt" PRETTY_NAME="OpenWrt 21.02-SNAPSHOT" VERSION_ID="21.02-snapshot" HOME_URL="https://openwrt.org/" …...
C++随心记
C随心记 C中的 CONST C中的const是表示不可修改 int main() {/* 对于变量而言 */// 不可修改的常量const int A 10;// 不可修改的指针指向const int* pointer_0 nullptr;int const* poniter_1 nullptr;// 不可修改指针指向的内容int* const poniter_2 nullptr; }const也…...
ES6从入门到精通:前言
ES6简介 ES6(ECMAScript 2015)是JavaScript语言的重大更新,引入了许多新特性,包括语法糖、新数据类型、模块化支持等,显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
Java入门学习详细版(一)
大家好,Java 学习是一个系统学习的过程,核心原则就是“理论 实践 坚持”,并且需循序渐进,不可过于着急,本篇文章推出的这份详细入门学习资料将带大家从零基础开始,逐步掌握 Java 的核心概念和编程技能。 …...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...
在WSL2的Ubuntu镜像中安装Docker
Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包: for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...
企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...
HashMap中的put方法执行流程(流程图)
1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...
人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式
今天是关于AI如何在教学中增强学生的学习体验,我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育,这并非炒作,而是已经发生的巨大变革。教育机构和教育者不能忽视它,试图简单地禁止学生使…...
在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...
