当前位置: 首页 > news >正文

使用辅助分类器 GAN 进行条件图像合成

Conditional Image Synthesis with Auxiliary Classifier GANs

Conditional Image Synthesis with Auxiliary Classifier GANs(简称AC-GANs)是一种用于改善生成对抗网络(GANs)进行图像合成的方法。在AC-GANs中,判别器除了要区分生成的图像与真实图像外,还额外承担了一个分类任务,即对输入图像的类别进行分类。这种方法可以提高生成图像的质量,并且能够生成具有特定类别标签的图像。

AC-GANs的关键在于引入了辅助分类器(Auxiliary Classifier),这个分类器被集成在判别器中,用于对输入图像的类别进行分类。判别器的输出包括两部分:一部分是判断图像是真实还是生成的,另一部分是对图像类别的预测。

在AC-GANs中,生成器的损失函数由两部分组成:

真实性损失(Adversarial Loss):生成器试图生成判别器难以区分的图像。
分类损失(Classification Loss):生成器生成的图像还要符合给定的类别标签。
这种结构不仅提高了图像的全局一致性,而且增加了生成图像的类别信息。实验表明,AC-GANs能够生成具有较高分辨率和类别一致性的图像样本。

class DiscriminatorACGAN(nn.Module):def __init__(self, x_dim, c_dim, dim=96, norm='none', weight_norm='spectral_norm'):super(DiscriminatorACGAN, self).__init__()norm_fn = _get_norm_fn_2d(norm)weight_norm_fn = _get_weight_norm_fn(weight_norm)def conv_norm_lrelu(in_dim, out_dim, kernel_size=3, stride=1, padding=1):return nn.Sequential(weight_norm_fn(nn.Conv2d(in_dim, out_dim, kernel_size, stride, padding)),norm_fn(out_dim),nn.LeakyReLU(0.2))self.ls = nn.Sequential(  # (N, x_dim, 32, 32)conv_norm_lrelu(x_dim, dim),conv_norm_lrelu(dim, dim),conv_norm_lrelu(dim, dim, stride=2),  # (N, dim , 16, 16)conv_norm_lrelu(dim, dim * 2),conv_norm_lrelu(dim * 2, dim * 2),conv_norm_lrelu(dim * 2, dim * 2, stride=2),  # (N, dim*2, 8, 8)conv_norm_lrelu(dim * 2, dim * 2, kernel_size=3, stride=1, padding=0),conv_norm_lrelu(dim * 2, dim * 2, kernel_size=1, stride=1, padding=0),conv_norm_lrelu(dim * 2, dim * 2, kernel_size=1, stride=1, padding=0),  # (N, dim*2, 6, 6)nn.AvgPool2d(kernel_size=6),  # (N, dim*2, 1, 1)torchlib.Reshape(-1, dim * 2),  # (N, dim*2))self.l_gan_logit = weight_norm_fn(nn.Linear(dim * 2, 1))  # (N, 1)self.l_c_logit = nn.Linear(dim * 2, c_dim)  # (N, c_dim)def forward(self, x):# x: (N, x_dim, 32, 32)feat = self.ls(x)gan_logit = self.l_gan_logit(feat)l_c_logit = self.l_c_logit(feat)return gan_logit, l_c_logit

在训练生成器与鉴别器时,额外添加了一个分类损失函数

相关文章:

使用辅助分类器 GAN 进行条件图像合成

Conditional Image Synthesis with Auxiliary Classifier GANs Conditional Image Synthesis with Auxiliary Classifier GANs(简称AC-GANs)是一种用于改善生成对抗网络(GANs)进行图像合成的方法。在AC-GANs中,判别器…...

C#中的static关键字:静态成员与单例模式的实现

在C#中,static 关键字是一个非常重要的概念,它用于声明静态成员,这些成员属于类本身,而不是类的任何特定实例。使用 static 关键字可以定义静态类、静态字段、静态属性、静态方法等。此外,理解静态成员也对于实现如单例…...

【优选算法】(第八篇)

目录 串联所有单词的⼦串(hard) 题目解析 讲解算法原理 编写代码 最⼩覆盖⼦串(hard) 题目解析 讲解算法原理 编写代码 串联所有单词的⼦串(hard) 题目解析 1.题目链接:. - 力扣&#…...

告别PPT熬夜!Kimi+AIPPT一键生成PPT,效率upup!

Kimi AiPPT 一键生成PPT 还在为做PPT熬夜加班吗?还在为PPT排版抓狂吗?现在,有一个好消息要告诉所有“打工人”!Kimi和AIPPT强强联手,推出了一键生成PPT功能,让你告别PPT制作的痛苦! 以前做…...

大语言模型在构建UNSPSC 分类数据中的应用

UNSPSC 是联合国标准产品和服务代码。UNSPSC由联合国开发计划署(UNDP)和Dun & Bradstreet公司(D & B)于1998年联合制定,自2003年以来一直由GS1 US管理。GS1 US 将在 2024 年底前将 UNSPSC 的管理权移交给 UNDP…...

C++初阶:STL详解(十)——priority_queue的介绍,使用以及模拟实现

✨✨小新课堂开课了,欢迎欢迎~✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 所属专栏:C:由浅入深篇 小新的主页:编程版小新-CSDN博客 一.priority_queue的介绍 优先级队列被实现…...

Qt | Linux+QFileSystemWatcher文件夹和文件监视(例如监视U盘挂载目录)

点击上方"蓝字"关注我们 01、QFileSystemWatcher >>> QFileSystemWatcher 是 Qt 提供的一个类,用于监视文件和目录的变化。它允许应用程序监控一个或多个文件和目录,并在这些文件或目录内容发生变化时收到通知。这使得 Qt 应用程序能够动态响应文件系统的…...

【Linux进程间通信】Linux匿名管道详解:构建进程间通信的隐形桥梁

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:Linux “ 登神长阶 ” 🌹🌹期待您的关注 🌹🌹 ❀Linux进程间通信 📒1. 进程间通信介绍📚2. 什么是管道📜3…...

【力扣 | SQL题 | 每日三题】力扣1148, 1327, 1211, 1174

1. 力扣1148:文章浏览1 1.1 题目: Views 表: ------------------------ | Column Name | Type | ------------------------ | article_id | int | | author_id | int | | viewer_id | int | | view_date …...

【鸿蒙开发】详解GridRowSizeOption的尺寸属性

文章目录 1. 尺寸属性的含义2. 为什么要有这几个属性3. 具体作用4. 如何使用总结 在鸿蒙(HarmonyOS)开发中,布局的灵活性和适应性对于构建高质量的应用至关重要。 GridRowSizeOption是鸿蒙开发框架提供的一个布局属性,用于定义网…...

Sping源码:三级缓存

目录 一、概念1、三级缓存的作用2、循环依赖的含义 二、代码1、代码下载2、文件功能介绍3、源码分析3.1、找到获取A对象的位置,打断点进行debug操作3.2、一步步找到在A对象中注入B对象的位置3.3、一步步找到B对象注入A对象的位置3.4、往下找到通过三级缓存解决循环依…...

latex有哪些颜色中文叫什么,Python绘制出来

latex有哪些颜色中文叫什么,Python绘制出来 为了展示xcolor包预定义的颜色及其对应的中文名称,并使用Python打印出来,我们可以先列出常见的预定义颜色名称,然后将它们翻译成中文,并最后用Python打印出来。 步骤 列出…...

C语言进程

什么是进程 什么是程序 一组可以被计算机直接识别的 有序 指令 的集合。 通俗讲:C语言编译后生成的可执行文件就是一个程序。 那么程序是静态还是动态的? 程序是可以被存储在磁盘上的,所以程序是静态的。 那什么是进程 进程是程序的执行过…...

C#基础(4)封装——成员方法

前言 我们在上一节学习了关于类的成员变量的使用,甚至也看到了相应的成员方法,我们可以将二者理解为类里面的变量和函数。 如果我这样说你肯定就能很快理解成员方法是什么作用了。 C#中设计成员方法的目的是为了将相关的功能代码组织在一起&#xff0…...

springbot,JWT令牌的使用。实现http请求拦截校验。

JWT 由三部分组成,用点(.)分隔 Header(头部) Payload(负载)Signature(签名) 一、原理 Jwt原理其实很简单,在后端首先要有个拦截器,他会拦截所有http请求&…...

【SQL】DDL语句

文章目录 1.SQL通用语法2.SQL的分类3.DDL3.1数据库操作3.2 表操作3.2.1 表操作--数据类型3.2.2 表操作--修改3.2.3 表操作--删除 SQL 全称 Structured Query Language,结构化查询语言。操作关系型数据库的编程语言,定义了一套操作关系型数据库统一标准 。…...

【分页】Spring Boot 列表分页 + javaScript前台展示

后端: 准备好查询实体与分页实体 1、分页工具实体 package com.ruoyi.dms.config;import com.alibaba.nacos.api.model.v2.Result; import lombok.Data;import java.io.Serializable; import java.util.List;/*** author 宁兴星* description: 列表返回结果集*/ …...

「安装」 Windows下安装CUDA和Pytorch

「安装」 Windows下安装CUDA和Pytorch 文章目录 「安装」 Windows下安装CUDA和PytorchMac、Linux、云端Windows安装CUDA安装miniconda安装PyTorch测试总结 其他 Mac、Linux、云端 Mac、Linux、云端安装Miniconda和Pytorch的方法参考其他资料。 Windows 下面进行Windows下安装…...

c语言基础作业

选择题 1.1、以下选项中,不能作为合法常量的是 __________ A)1.234e04 B)1.234e0.4C)1.234e4 D)1.234e0 1.2、以下定义变量并初始化错误的是_____________。 A) char c1 ‘H’ ; B) char c1 9…...

uniapp view增加删除线

推荐学习文档 golang应用级os框架,欢迎stargolang应用级os框架使用案例,欢迎star案例:基于golang开发的一款超有个性的旅游计划app经历golang实战大纲golang优秀开发常用开源库汇总想学习更多golang知识,这里有免费的golang学习笔…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理&#xff1a…...

PHP和Node.js哪个更爽?

先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程&#xff0c;代码下载&#xff1a;这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中&#xff0c;**知识蒸馏&#xff08;Knowledge Distillation&#xff09;**被广泛应用&#xff0c;作为提升模型…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)

RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发&#xff0c;后来由Pivotal Software Inc.&#xff08;现为VMware子公司&#xff09;接管。RabbitMQ 是一个开源的消息代理和队列服务器&#xff0c;用 Erlang 语言编写。广泛应用于各种分布…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

Kafka主题运维全指南:从基础配置到故障处理

#作者&#xff1a;张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1&#xff1a;主题删除失败。常见错误2&#xff1a;__consumer_offsets占用太多的磁盘。 主题日常管理 …...

Python 训练营打卡 Day 47

注意力热力图可视化 在day 46代码的基础上&#xff0c;对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...

Monorepo架构: Nx Cloud 扩展能力与缓存加速

借助 Nx Cloud 实现项目协同与加速构建 1 &#xff09; 缓存工作原理分析 在了解了本地缓存和远程缓存之后&#xff0c;我们来探究缓存是如何工作的。以计算文件的哈希串为例&#xff0c;若后续运行任务时文件哈希串未变&#xff0c;系统会直接使用对应的输出和制品文件。 2 …...