当前位置: 首页 > news >正文

观测云对接 SkyWalking 最佳实践

简介

SkyWalking 是一个开源的 APM(应用性能监控)和可观测性分析平台,专为微服务、云原生架构和基于容器的架构设计。它提供了分布式追踪、服务网格遥测分析、度量聚合和可视化一体化的解决方案。如果您的应用中正在使用SkyWalking ,并且希望将 SkyWalking 采集到的 Tracing 数据集成到观测云,实现从基础设施到应用层的全面可观测。即可参考本文操作步骤,快速完成切换。

集成环境

  • Java 版本 1.8
  • DataKit 版本 1.31.0
  • SkyWalking Agent 版本 9.0

操作步骤

1、安装 DataKit

登陆观测云控制台,点击左侧「集成」选择顶部「DataKit」,即可看到各种方式的安装命令。

本文选择 Linux 方式安装,执行安装命名即可。

2、开启 SkyWalking 采集器

进入 DataKit 安装目录下的 /usr/local/datakit/conf.d/skywalking 目录,复制 skywalking.conf.sample 并命名为 skywalking.conf ,修改 skywalking agent 监听地址,示例如下:

cd /usr/local/datakit/conf.d/skywalking
cp skywalking.conf.sample skywalking.conf
# 重启datakit 服务
datakit service -R

3、配置 SkyWalking Agent

修改 SkyWalking Agent 配置文件中的 collector.backend_service 地址为上一步中 datakit 所在的主机 ip 和监听端口。

4、启动 Java 服务,在观测云查看 Tracing 数据

启动并访问 Java 服务,随后即可在观测云控制台,点击「应用性能监测」选择顶部「链路」查看对应的应用链路性能数据。

5、Tracing 关联指标

点击具体一条链接详情,可以关联查看该服务在调用时的各项主机、中间件等指标情况。

6、Tracing 关联日志

点击一条链路详情,还可以根据 trace_id ,关联查看对应的业务日志。

相关文章:

观测云对接 SkyWalking 最佳实践

简介 SkyWalking 是一个开源的 APM(应用性能监控)和可观测性分析平台,专为微服务、云原生架构和基于容器的架构设计。它提供了分布式追踪、服务网格遥测分析、度量聚合和可视化一体化的解决方案。如果您的应用中正在使用SkyWalking &#xf…...

AI少女/HS2甜心选择2 仿天刀人物卡全合集打包

内含AI少女/甜心选择2 仿天刀角色卡全合集打包共21张 下载地址:https://www.51888w.com/408.html 部分演示图:...

MISC - 第11天(练习)

前言 各位师傅大家好,我是qmx_07,今天继续讲解MISC的相关知识 john-in-the-middle 导出http数据文件里面logo.png 是旗帜图案,放到stegsolve查看 通过转换颜色,发现flag信息 flag{J0hn_th3_Sn1ff3r} [UTCTF2020]docx 附件信息…...

[3.4]【机器人运动学MATLAB实战分析】PUMA560机器人逆运动学MATLAB计算

PUMA560是六自由度关节型机器人,其6个关节都是转动副,属于6R型操作臂。各连杆坐标系如图1,连杆参数如表1所示。 图1 PUMA560机器人的各连杆坐标系 表1 PUMA560机器人的连杆参数 用代数法对其进行运动学反解。具体步骤如下: 1、求θ1 PMUMA56...

centos常用知识和命令

linux目录及结构 /etc #存配置文件 /var #存日志文件 /home #用户家目录 /root #root用户家目录 /bin #命令文件目录 /sbin #超级管理员命令目录 /dev #设备文件目录 /boot #系统启动核心目录 /lib #库文件目录 /mnt #挂载目录 /tmp #临时文件目录 /usr #用户程序存…...

基于yolov8调用本地摄像头并将读取的信息传入jsonl中

最近在做水面垃圾识别的智能船 用到了yolov8进行目标检测 修改并添加了SEAttention注意力机制 详情见其他大神 【保姆级教程|YOLOv8添加注意力机制】【1】添加SEAttention注意力机制步骤详解、训练及推理使用_yolov8添加se-CSDN博客 并且修改传统的iou方法改为添加了wise-io…...

Linux中的进程间通信之管道

管道 管道是Unix中最古老的进程间通信的形式。 我们把从一个进程连接到另一个进程的一个数据流称为一个“管道” 匿名管道 #include <unistd.h> 功能:创建一无名管道 原型 int pipe(int fd[2]); 参数 fd&#xff1a;文件描述符数组,其中fd[0]表示读端, fd[1]表示写端 …...

【Vue】vue2项目打包后部署刷新404,配置publicPath ./ 不生效问题

Vue Router mode&#xff0c;为 history 无效&#xff0c;建议使用默认值 hash&#xff1b;...

【PyTorch】生成对抗网络

生成对抗网络是什么 概念 Generative Adversarial Nets&#xff0c;简称GAN GAN&#xff1a;生成对抗网络 —— 一种可以生成特定分布数据的模型 《Generative Adversarial Nets》 Ian J Goodfellow-2014 GAN网络结构 Recent Progress on Generative Adversarial Networks …...

Vue3轻松实现前端打印功能

文章目录 1.前言2.安装配置2.1 下载安装2.2 main.js 全局配置3.综合案例3.1 设置打印区域3.2 绑定打印事件3.3 完整代码4.避坑4.1 打印表格无边框4.2 单选框复选框打印不选中4.3 去除页脚页眉4.4 打印內容不自动换行1.前言 vue3 前端打印功能主要通过插件来实现。 市面上常用的…...

SHA-1 是一种不可逆的、固定长度的哈希函数,在 Git 等场景用于生成唯一的标识符来管理对象和数据完整性

SHA-1 (Secure Hash Algorithm 1) 是一种加密哈希函数&#xff0c;它能将任意大小的数据&#xff08;如文件、消息&#xff09;转换为一个固定长度的 160 位&#xff08;20 字节&#xff09;哈希值。这种哈希值通常以 40 个十六进制字符的形式表示&#xff0c;是数据的“指纹”…...

Activiti7 工作流引擎学习

目录 一. 什么是 Activiti 工作流引擎 二. Activiti 流程创建步骤 三. Activiti 数据库表含义 四. BPMN 建模语言 五. Activiti 使用步骤 六. 流程定义与流程实例 一. 什么是 Activiti 工作流引擎 Activiti 是一个开源的工作流引擎&#xff0c;用于业务流程管理&#xf…...

pytorch使用LSTM模型进行股票预测

文章目录 tushare获取股票数据数据预处理构建模型训练模型测试模型tushare获取股票数据 提取上证指数代码为603912的股票:佳力图,时间跨度为2014-01-01到今天十年的数据。 import tushare as ts pro = ts.pro_api()#准备训练集数据df = ts.pro_bar(ts_code=603912.SH, star…...

掌握 C# 异常处理机制

在任何编程语言中&#xff0c;处理错误和异常都是不可避免的。C# 提供了强大的异常处理机制&#xff0c;可以帮助开发者优雅地捕获和处理程序中的异常&#xff0c;确保程序的健壮性和可靠性。本文将带你了解 C# 中的异常类、try-catch 语句、自定义异常以及 finally 块的使用。…...

【Redis】Redis Cluster 简单介绍

Redis Cluster 是 Redis 3.0 提供的一种分布式解决方案, 允许数据在多个节点之间分散存储, 从而实现高可用性和可扩展性。 特点: 分片: Redis Cluster 将数据分散到多个节点, 通过哈希槽 (hash slots) 机制将键映射到不同的节点上。总共有 16384 个哈希槽, 每个节点负责一部分…...

【EXCEL数据处理】000010 案列 EXCEL文本型和常规型转换。使用的软件是微软的Excel操作的。处理数据的目的是让数据更直观的显示出来,方便查看。

前言&#xff1a;哈喽&#xff0c;大家好&#xff0c;今天给大家分享一篇文章&#xff01;创作不易&#xff0c;如果能帮助到大家或者给大家一些灵感和启发&#xff0c;欢迎收藏关注哦 &#x1f495; 目录 【EXCEL数据处理】000010 案列 EXCEL单元格格式。EXCEL文本型和常规型转…...

golang grpc进阶

protobuf 官方文档 基本数据类型 .proto TypeNotesGo Typedoublefloat64floatfloat32int32使用变长编码&#xff0c;对于负值的效率很低&#xff0c;如果你的域有可能有负值&#xff0c;请使用sint64替代int32uint32使用变长编码uint32uint64使用变长编码uint64sint32使用变长…...

Java JUC(三) AQS与同步工具详解

Java JUC&#xff08;三&#xff09; AQS与同步工具详解 一. ReentrantLock 概述 ReentrantLock 是 java.util.concurrent.locks 包下的一个同步工具类&#xff0c;它实现了 Lock 接口&#xff0c;提供了一种相比synchronized关键字更灵活的锁机制。ReentrantLock 是一种独占…...

使用rust写一个Web服务器——async-std版本

文章目录 实现异步代码并发地处理连接使用多线程提升性能 使用rust实现一个异步运行时是async-std的单线程Web服务器。 仓库地址&#xff1a; 1037827920/web-server: 使用rust编写的简单web服务器 (github.com) 在之前的单线程版本的Web服务器代码上进行修改&#xff0c;具体…...

C语言复习概要(一)

本文 C语言入门详解&#xff1a;从基础概念到分支与循环1. C语言常见概念1.1 程序的基本结构1.2 变量作用域和存储类1.3 输入输出1.4 编译与运行 2. C语言中的数据类型和变量2.1 基本数据类型2.2 变量的声明与初始化2.3 常量与枚举 3. C语言的分支结构3.1 if语句3.2 if-else语句…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

PHP和Node.js哪个更爽?

先说结论&#xff0c;rust完胜。 php&#xff1a;laravel&#xff0c;swoole&#xff0c;webman&#xff0c;最开始在苏宁的时候写了几年php&#xff0c;当时觉得php真的是世界上最好的语言&#xff0c;因为当初活在舒适圈里&#xff0c;不愿意跳出来&#xff0c;就好比当初活在…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求&#xff0c;由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面&#xff1a; &#x1f3db;️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限&#xff0c;形成层级清晰的管理网络&#xf…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

【算法训练营Day07】字符串part1

文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接&#xff1a;344. 反转字符串 双指针法&#xff0c;两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...