当前位置: 首页 > news >正文

Scrapy 爬虫的大模型支持

使用 Scrapy 时,你可以轻松使用大型语言模型 (LLM) 来自动化或增强你的 Web 解析。

有多种使用 LLM 来帮助进行 Web 抓取的方法。在本指南中,我们将在每个页面上调用一个 LLM,从中抽取我们定义的一组属性,而无需编写任何选择器或训练任何模型。

 NSDT工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 - REVIT导出3D模型插件 - 3D模型语义搜索引擎 - AI模型在线查看 - Three.js虚拟轴心开发包 - 3D模型在线减面 - STL模型在线切割

1、启动 Scrapy 项目

按照 Web 抓取教程的启动 Scrapy 项目页面上的说明启动 Scrapy 项目。

2、安装 LLM 依赖项

本指南将使用 LiteLLM 作为 LLM 的 API。

出于本指南的目的,我们将通过 Ollama 运行 Mistral 7B LLM,但 LiteLLM 几乎可以运行任何 LLM,正如你稍后将看到的那样。

首先安装 html2text、LiteLLM 和 Ollama:

pip install html2text litellm ollama

然后启动 Ollama 服务器:

ollama serve

打开第二个终端,安装 Mistral 7B:

ollama pull mistral

3、在你的爬虫程序中使用 LLM

现在你有一个包含简单爬虫程序和 LLM 的 Scrapy 项目可供使用,请在 tutorial/spiders/books_toscrape_com_llm.py 中使用以下代码创建第一个爬虫程序的替代方案:

import json
from json.decoder import JSONDecodeError
from logging import getLoggerimport ollama
from html2text import HTML2Text
from litellm import acompletion
from scrapy import Spiderhtml_cleaner = HTML2Text()
logger = getLogger(__name__)async def llm_parse(response, prompts):key_list = ", ".join(prompts)formatted_scheme = "\n".join(f"{k}: {v}" for k, v in prompts.items())markdown = html_cleaner.handle(response.text)llm_response = await acompletion(messages=[{"role": "user","content": (f"Return a JSON object with the following root keys: "f"{key_list}\n"f"\n"f"Data to scrape:\n"f"{formatted_scheme}\n"f"\n"f"Scrape it from the following Markdown text:\n"f"\n"f"{markdown}"),},],model="ollama/mistral",)data = llm_response["choices"][0]["message"]["content"]try:return json.loads(data)except JSONDecodeError:logger.error(f"LLM returned an invalid JSON for {response.url}: {data}")return {}class BooksToScrapeComLLMSpider(Spider):name = "books_toscrape_com_llm"start_urls = ["http://books.toscrape.com/catalogue/category/books/mystery_3/index.html"]def parse(self, response):next_page_links = response.css(".next a")yield from response.follow_all(next_page_links)book_links = response.css("article a")yield from response.follow_all(book_links, callback=self.parse_book)async def parse_book(self, response):prompts = {"name": "Product name","price": "Product price as a number, without the currency symbol",}llm_data = await llm_parse(response, prompts)yield {"url": response.url,**llm_data,}

在上面的代码中:

首先定义了一个 llm_parse 函数,它接受 Scrapy 响应和要提取的字段字典及其字段特定提示。

然后,将响应转换为 Markdown 语法,以便 LLM 更轻松地解析,并向 LLM 发送一个提示,要求输入具有相应字段的 JSON 对象。

注意:构建一个以预期格式获取预期数据的提示是此过程中最困难的部分。此处的示例提示适用于 Mistral 7B 和  books.toscrape.com,但可能不适用于其他 LLM 或其他网站。

如果是有效的 JSON,则返回 LLM 结果。

使用字段提示调用 llm_parse 来提取名称和价格,并在包含非来自 LLM(url)的额外字段后生成结果字典。

现在可以运行你的代码:

scrapy crawl books_toscrape_com_llm -O books.csv

在大多数计算机上,执行将需要很长时间。运行 ollama serve 的终端中的日志将显示你的 LLM 如何获取提示并为其生成响应。

执行完成后,生成的 books.csv 文件将包含 books.toscrape.com 神秘类别中所有书籍的记录(CSV 格式)。您可以使用任何电子表格应用程序打开 books.csv

4、后续步骤

以下是一些后续步骤的想法:

  • 尝试其他 LLM。

上述代码中的以下一行通过 Ollama 的本地实例确定要使用的 LLM 是 Mistral 7B:

model="ollama/mistral"

如果你可以访问其他 LLM,则可以将此行更改为使用其他 LLM,并查看更改如何影响速度、质量和成本。

请参阅 LiteLLM 文档,了解许多不同 LLM 的设置说明。

  • 看看你是否可以获得与 Zyte API 自动提取相同的输出(例如产品),同时具有可比的速度、质量和成本。
  • 看看你是否还可以自动化抓取部分并实现与 Zyte 的 AI 驱动蜘蛛可以做的事情类似的目标。
  • 尝试提取源 HTML 中无法以结构化方式获得的数据,例如书籍作者,有时可以在书籍描述中找到。
  • 尝试提取源 HTML 中无法直接获得的数据,例如书籍语言(英语)、货币代码(GBP)或书籍描述的摘要。
  • 尝试不同的 HTML 清理方法,或者根本不进行清理。

上面的代码将响应 HTML 转换为 Markdown,因为这允许 Mistral 7B 按预期工作。其他 LLM 可能适用于原始 HTML,可能在经过一些清理之后(请参阅 clear-html),从而能够提取转换为 Markdown 时可能丢失的一些额外数据。

但请注意,LLM 的上下文长度有限,可能需要清理和修剪 HTML 才能将 HTML 放入提示中,而不会超过该上下文长度。

  • 如果你可以访问支持图像解析的 LLM,请查看是否可以扩展蜘蛛以下载书籍封面,并从中提取其他信息,例如书籍作者。
  • 不要每页使用一个 LLM,而是使用 LLM 根据第一页的原始 HTML 为所需字段生成 CSS 选择器,并使用这些选择器解析所有其他页面。

这样可以最大限度地减少 LLM 的使用,以获得更好的速度和成本,但对于具有多种不同布局或执行某些布局 A-B 测试的网站,或者网站在抓取过程中更改布局的不幸情况,可能会影响质量。


原文链接:Scrapy 大模型爬虫 - BimAnt

相关文章:

Scrapy 爬虫的大模型支持

使用 Scrapy 时,你可以轻松使用大型语言模型 (LLM) 来自动化或增强你的 Web 解析。 有多种使用 LLM 来帮助进行 Web 抓取的方法。在本指南中,我们将在每个页面上调用一个 LLM,从中抽取我们定义的一组属性,而无需编写任何选择器或…...

数据仓库简介(一)

数据仓库概述 1. 什么是数据仓库? 数据仓库(Data Warehouse,简称 DW)是由 Bill Inmon 于 1990 年提出的一种用于数据分析和挖掘的系统。它的主要目标是通过分析和挖掘数据,为不同层级的决策提供支持,构成…...

Kafka和RabbitMQ区别

RabbitMQ的消息延迟是微秒级,Kafka是毫秒级(1毫秒1000微秒) 延迟消息是指生产者发送消息发送消息后,不能立刻被消费者消费,需要等待指定的时间后才可以被消费。 Kafka的单机呑吐量是十万级,RabbitMQ是万级…...

go-zero学习

go-zero官网: https://go-zero.dev/docs/tasks 好文: https://blog.csdn.net/m0_63629756/article/details/136599547 视频: https://www.bilibili.com/video/BV18JxUeyECg 微服务基础 根目录下,一个文件夹就是一个微服务。如果微…...

python如何查询函数

1、通用的帮助函数help() 使用help()函数来查看函数的帮助信息。 如: import requests help(requests) 会有类似如下输出: 2、查询函数信息 ★查看模块下的所有函数: dir(module_name) #module_name是要查询的函数名 如: i…...

计算机视觉与深度学习 | 从激光雷达数据中提取地面点和非地面点(附matlab代码)

===================================================== github:https://github.com/MichaelBeechan CSDN:https://blog.csdn.net/u011344545 ===================================================== 激光雷达数据 使用velodyneFileReader函数从P...

vulnhub-wakanda 1靶机

vulnhub:wakanda: 1 ~ VulnHub 导入靶机,放在kali同网段,扫描 靶机在192.168.81.5,扫描端口 四个端口,详细扫描一下 似乎没什么值得注意的,先看网站 就这一个页面,点按钮也没反应,扫…...

Bilibili视频如何保存到本地

Bilibili(哔哩哔哩)作为中国领先的视频分享平台之一,汇聚了大量的优质内容,从搞笑动画、综艺节目到专业教程,应有尽有。许多用户时常会遇到这样的需求:希望将视频保存到本地,方便离线观看或者保存珍藏。由于版权保护等…...

C++之多线程

前言 多线程和多进程是并发编程的两个核心概念,它们在现代计算中都非常重要,尤其是在需要处理大量数据、提高程序性能和响应能力的场景中。 多线程的重要性: 资源利用率:多线程可以在单个进程中同时执行多个任务,这可以更有效地利用CPU资源,特别是在多核处理器上。 性…...

《C++音频降噪秘籍:让声音纯净如初》

在音频处理领域,降噪是一项至关重要的任务。无论是录制音乐、语音通话还是音频后期制作,都需要有效地去除背景噪声,以获得清晰、纯净的音频效果。在 C中实现高效的音频降噪处理,可以为音频应用带来更高的质量和更好的用户体验。本…...

C(十)for循环 --- 黑神话情景

前言: "踏过三界宝刹,阅过四洲繁华。笑过五蕴痴缠,舍过六根牵挂。怕什么欲念不休,怕什么浪迹天涯。步履不停,便是得救之法。" 国际惯例,开篇先喝碗鸡汤。 今天,杰哥写的 for 循环相…...

记录一次docker报错无法访问文件夹,权限错误问题

记录一次docker报错无法访问文件夹,权限错误问题 1. 背景 使用docker安装photoview,为其分配了一个cache目录,用户其缓存数据。在运行过程中,扫描文件后显示如下错误 could not make album image cache directory: mkdir /app/c…...

react crash course 2024(8) useEffect

引入 import { useEffect } from react; useEffect – React 中文文档useEffect 是一个 React Hook,它允许你 将组件与外部系统同步。 有些组件需要与网络、某些浏览器 API 或第三方库保持连接,当它们显示在页面上时。这些系统不受 React 控制&#xff0…...

GEE开发之Modis_NDWI数据分析和获取

GEE开发之Modis_NDWI数据分析和获取 0 数据介绍NDWI介绍MOD09GA介绍 1 NDWI天数据下载2 NDWI月数据下载3 NDWI年数据下载 前言:本文主要介绍Modis下的NDWI数据集的获取。归一化差异水指数 (NDWI) 对植被冠层液态水含量的变化很敏感。它来自近红外波段和第二个红外波…...

netty之NettyClient半包粘包处理、编码解码处理、收发数据方式

前言 Netty开发中,客户端与服务端需要保持同样的;半包粘包处理,编码解码处理、收发数据方式,这样才能保证数据通信正常。在前面NettyServer的章节中我们也同样处理了;半包粘包、编码解码等,为此在本章节我们…...

Linux:文件描述符介绍

文章目录速览 1、虚拟地址空间(1)What(什么是虚拟地址空间)(2)Why(为什么需要虚拟地址空间) 2、文件描述符(1)What(什么是文件描述符)(2)文件描述符表 1、虚拟地址空间 (1)What(什么是虚拟地址…...

stm32f103调试,程序与定时器同步设置

在调试定时器相关代码时,注意到定时器的中断位总是置1,怀疑代码有问题,经过增大定时器的中断时间,发现定时器与代码调试并不同步,这一点对于调试涉及定时器的代码是非常不利的,这里给出keil调试stm32使定时…...

《Python编程:从入门到实践》数据可视化

一、项目 数据可视化学习 二、库依赖 matplotlib,pygal, 三、生成数据 1.绘制简单的折线图 import matplotlib.pyplot as pltsquares [1, 4, 9, 16, 25] plt.plot(squares) plt.show() 模块pyplot包含很多用于生成图表的函数。 (1&am…...

github/git密钥配置与使用

零、前言 因为要在ubuntu上做点东西,发现git clone 的时候必须输账户密码,后来发现密码是token,但是token一大串太烦了,忙了一天发现可以通过配置 公钥 来 替代 http 的 部署方式。 一、生成 ssh 密钥对 我们先测试下能不能 连接…...

BiLSTM模型实现电力数据预测

基础模型见:A020-LSTM模型实现电力数据预测 1. 引言 时间序列预测在电力系统管理、负荷预测和能源优化等领域具有重要意义。传统的单向长短期记忆网络(LSTM)因其在处理时间序列数据中的优势,广泛应用于此类任务。然而&#xff0…...

龙虎榜——20250610

上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

大数据学习(132)-HIve数据分析

​​​​🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言&#x1f4…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率&#xff0c…...

C++.OpenGL (14/64)多光源(Multiple Lights)

多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...

【Go语言基础【13】】函数、闭包、方法

文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数(函数作为参数、返回值) 三、匿名函数与闭包1. 匿名函数(Lambda函…...

算法:模拟

1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) ​遍历字符串​:通过外层循环逐一检查每个字符。​遇到 ? 时处理​: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: ​与…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

上位机开发过程中的设计模式体会(1):工厂方法模式、单例模式和生成器模式

简介 在我的 QT/C 开发工作中,合理运用设计模式极大地提高了代码的可维护性和可扩展性。本文将分享我在实际项目中应用的三种创造型模式:工厂方法模式、单例模式和生成器模式。 1. 工厂模式 (Factory Pattern) 应用场景 在我的 QT 项目中曾经有一个需…...