当前位置: 首页 > news >正文

模型评估与验证:确保模型在未知数据上的表现----示例:使用K折交叉验证评估分类模型、房价预测问题使用K折交叉验证来评估一个线性回归模型的性能

模型评估与验证是机器学习流程中的关键步骤,它帮助我们了解模型在未见过的数据上的泛化能力。交叉验证(Cross-Validation, CV)是一种常用的技术,通过将数据集划分为多个子集并进行多次训练和测试来估计模型的性能。此外,选择合适的评价指标对于不同类型的任务至关重要。

交叉验证

交叉验证的主要目的是减少由于数据划分带来的偏差,并提供更可靠的性能估计。常见的交叉验证方法包括K折交叉验证(K-Fold Cross-Validation)和留一法交叉验证(Leave-One-Out Cross-Validation)。

示例:使用K折交叉验证评估分类模型

假设二分类问题,将使用K折交叉验证来评估一个随机森林分类器的性能。

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix# 加载数据
data = pd.read_csv('binary_classification_data.csv')
X = data.drop('target', axis=1)
y = data['target']# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 定义分类器
classifier = RandomForestClassifier(random_state=42)# 使用K折交叉验证评估模型
kfold = KFold(n_splits=5, shuffle=True, random_state=42)
cv_scores = cross_val_score(classifier, X_train, y_train, cv=kfold, scoring='accuracy')print("Cross-Validation Accuracy Scores:", cv_scores)
print("Mean CV Accuracy:", np.mean(cv_scores))# 训练最终模型
classifier.fit(X_train, y_train)# 在测试集上评估
y_pred = classifier.predict(X_test)# 计算各种评价指标
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)print(f"Test Set Accuracy: {accuracy:.4f}")
print(f"Test Set Precision: {precision:.4f}")
print(f"Test Set Recall: {recall:.4f}")
print(f"Test Set F1 Score: {f1:.4f}")
print("Confusion Matrix:\n", conf_matrix)

 

  • 数据加载

    • 使用pandas读取CSV文件,并分离特征和标签。
  • 数据划分

    • 使用train_test_split将数据划分为训练集和测试集。
  • 定义分类器

    • 创建一个随机森林分类器实例。
  • K折交叉验证

    • 使用KFold创建一个5折交叉验证对象。
    • 使用cross_val_score对训练集进行交叉验证,并计算准确率。
  • 训练最终模型

    • 使用整个训练集训练最终的分类器。
  • 测试集评估

    • 在测试集上进行预测。
    • 计算并打印多种评价指标,包括准确率、精确度、召回率、F1分数和混淆矩阵。
回归任务的评估

对于回归任务,常用的评价指标包括均方误差(MSE)、平均绝对误差(MAE)和决定系数(R²)等。

示例:使用K折交叉验证评估回归模型

假设房价预测问题使用K折交叉验证来评估一个线性回归模型的性能。

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score# 加载数据
data = pd.read_csv('house_prices.csv')
X = data.drop('price', axis=1)
y = data['price']# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 定义回归器
regressor = LinearRegression()# 使用K折交叉验证评估模型
kfold = KFold(n_splits=5, shuffle=True, random_state=42)
cv_scores = cross_val_score(regressor, X_train, y_train, cv=kfold, scoring='neg_mean_squared_error')print("Cross-Validation MSE Scores (negative values):", cv_scores)
print("Mean CV MSE (positive value):", -np.mean(cv_scores))# 训练最终模型
regressor.fit(X_train, y_train)# 在测试集上评估
y_pred = regressor.predict(X_test)# 计算各种评价指标
mse = mean_squared_error(y_test, y_pred)
mae = mean_absolute_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)print(f"Test Set MSE: {mse:.4f}")
print(f"Test Set MAE: {mae:.4f}")
print(f"Test Set R^2: {r2:.4f}")

 

  • 数据加载

    • 使用pandas读取CSV文件,并分离特征和标签。
  • 数据划分

    • 使用train_test_split将数据划分为训练集和测试集。
  • 定义回归器

    • 创建一个线性回归模型实例。
  • K折交叉验证

    • 使用KFold创建一个5折交叉验证对象。
    • 使用cross_val_score对训练集进行交叉验证,并计算负均方误差(因为cross_val_score默认返回的是负值以方便排序)。
  • 训练最终模型

    • 使用整个训练集训练最终的回归模型。
  • 测试集评估

    • 在测试集上进行预测。
    • 计算并打印多种评价指标,包括均方误差(MSE)、平均绝对误差(MAE)和决定系数(R²)。

相关文章:

模型评估与验证:确保模型在未知数据上的表现----示例:使用K折交叉验证评估分类模型、房价预测问题使用K折交叉验证来评估一个线性回归模型的性能

模型评估与验证是机器学习流程中的关键步骤,它帮助我们了解模型在未见过的数据上的泛化能力。交叉验证(Cross-Validation, CV)是一种常用的技术,通过将数据集划分为多个子集并进行多次训练和测试来估计模型的性能。此外&#xff0…...

awd基础学习

一、常用防御手段 1、改ssh密码 passwd [user] 2、改数据库密码 进入数据库 mysql -uroot -proot 改密码 update mysql.user set passwordpassword(新密码) where userroot; 查看用户信息密码 select host,user,password from mysql.user; 改配置文件 (否则会宕机…...

C#基于SkiaSharp实现印章管理(10)

向PDF文件插入印章图片比之前实现的向图片文件插入印章麻烦得多。   最初的想法是使用PDF浏览控件在线打开PDF文件,然后在控件中实现鼠标移动时动态显示印章,点击鼠标时向当前PDF页面的鼠标点击位置插入图片。由于是.net 8的Winform项目,选…...

通过栈实现字符串中查找是否有指定字符串的存在

题目示例: 分析 由与没有给出字符串的长度,所以只能通过getline一次性处理,而在输入后恰好能倒序处理字符串,以标点符号为分界点,将数字当成字符放到栈里,遇到下一个标点符号时执行查找操作,…...

MongoDB伪分布式部署(mac M2)

1. 序言 本博客是上一博客的进阶版:mac M2安装单机版 MongoDB 7.x,上一博客可以看做是单机、单节点部署MongoDB本博客将介绍单机、多服务部署MongoDB,实际就是伪分布式部署 2. 副本集(Replica Set)方式部署 2.1 什么是副本集? …...

Golang | Leetcode Golang题解之第454题四数相加II

题目: 题解: func fourSumCount(a, b, c, d []int) (ans int) {countAB : map[int]int{}for _, v : range a {for _, w : range b {countAB[vw]}}for _, v : range c {for _, w : range d {ans countAB[-v-w]}}return }...

[ComfyUI]Flux:超美3D微观山水禅意,经典中文元素AI重现,佛陀楼阁山水画卷

在数字艺术和创意领域,[ComfyUI]Flux以其独特的虚实结合技术,已经成为艺术家和设计师们手中的利器。今天,我们激动地宣布,[ComfyUI]Flux带来了一款超美的3D微观山水禅意作品,经典中文元素通过AI技术重现,包…...

Linux 系统 nvm 管理node无法使用

文章目录 一、报错说明二、报错原因三、解决办法四、验证 一、报错说明 centos7服务器使用nvm安装的node之后,只要使用npm或者node,均会出现以下问题。 npm -v node: /lib64/libm.so.6: version GLIBC_2.27 not found (required by node) node: /lib64…...

信号处理快速傅里叶变换(FFT)的学习

FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱提取出来&am…...

vue3项目el-table表格行内编辑加输入框校验

核心点 1. el-form的model属性需要跟el-form-item的prop要对应 2. el-form的model属性绑定tableData 3. el-form-item的prop绑定字符串&#xff1a;scope.index.列名&#xff08;注意有个点&#xff09; 4. el-form-item需要单独设置rules属性 代码示例 <el-form :mod…...

【Node.js】内置模块FileSystem的保姆级入门讲解

作者&#xff1a;CSDN-PleaSure乐事 欢迎大家阅读我的博客 希望大家喜欢 使用环境&#xff1a;Vscode 本文代码都经由博主PleaSure乐事实操后得出&#xff0c;可以放心使用。 1.FileSystem介绍 Node.js 的 fs&#xff08;filesystem&#xff09;模块是一个核心模块&#xff0c…...

问:LINUXWINDOWS线程CPU时间如何排序?

Linux 在Linux上&#xff0c;你可以使用ps命令结合sort命令来查看和排序进程或线程的CPU使用时间。 查看进程的CPU使用时间并按时间排序 使用ps命令的-o选项可以自定义输出格式&#xff0c;-e选项表示显示所有进程&#xff0c;--sort选项用于排序。 ps -e -o pid,tid,comm,…...

postgresql-重复执行相同语句,试试 prepare!

文章目录 每次你向 PostgreSQL 发送 SQL 语句时&#xff0c;数据库都必须对其进行解析(parse)。解析虽然很快&#xff0c;但如果同样的语句被解析一千次&#xff0c;这种操作累积起来可能会占用大量时间&#xff0c;而这些时间本可以用于处理其他事务。为避免这种情况&#xff…...

wpf加载带材料的3D模型(下载的3D预览一样有纹理)

背景&#xff1a;最近真的是忙啊&#xff0c;累出汁水了 整体效果&#xff1a; 放大可以看清砖头&#xff1a; 1、需要自己准备好3D模型&#xff0c;比如我这里是下载的这里的3D Warehouse&#xff0c;下载Collada File格式文件 2、解压可以看到一个model.dae和材料的文件夹&…...

【k8s之深入理解调度】调度框架扩展点理解

参考自 K8s 调度框架设计与 scheduler plugins 开发部署示例&#xff08;2024&#xff09; 调度插件扩展点 等待调度阶段PreEnqueuePod 处于 ready for scheduling 的阶段。 内部工作原理&#xff1a;sig-scheduling/scheduler_queues.md。在 Pod 被放入调度队列之前执行的插…...

音视频基础理论

1. 音频基础 1.1 音频基本概念 1.1 频率&#xff1a;声波的频率&#xff0c;即声音的音调&#xff0c;人类听觉的频率(音调)范围为20Hz--20KHz 1.2 振幅&#xff1a;即声波的响度&#xff0c;通俗的讲就是声音的高低&#xff0c;一般男生的声音振幅(响度)大于女生。 1.3 波形…...

《江苏科技大学学报(自然科学版)》

《江苏科技大学学报&#xff08;自然科学版&#xff09;》&#xff08;双月刊&#xff0c;国内外公开发行&#xff09;是由江苏省教育厅主管、江苏科技大学主办的理工类学术期刊&#xff0c;1986年创刊&#xff0c;国际刊号&#xff1a;ISSN1673-4807&#xff0c;国内刊号&…...

C++初学者指南-5.标准库(第二部分)–随机数生成

C初学者指南-5.标准库(第二部分)–随机数生成 文章目录 C初学者指南-5.标准库(第二部分)–随机数生成基本概念例子统一随机数布尔值&#xff08;“抛硬币”&#xff09;正态分布具有独立概率的整数 怎么做种子引擎使用自定义生成器 shuffle算法分布类型概述通用接口均匀分布采样…...

Unity2017在安卓下获取GPS位置时闪退的解决办法

在Unity使用低功耗蓝牙通信&#xff08;BLE&#xff09;需要用到设备的位置信息。但是调用Input.location.Start()程序会闪退。 解决办法&#xff1a;调用原生安卓接口。 参见《Unity2021通过aar调用Android方法》编写一个aar插件gpsplugin&#xff0c;在插件中提供获取GPS位…...

OpenGL ES 索引缓冲区(4)

OpenGL ES 索引缓冲区(4) 简述 本节会介绍索引缓冲区&#xff0c;索引缓冲区和顶点缓冲区类似&#xff0c;也是显存上的一段内存&#xff0c;只不过上面的数据用处不同&#xff0c;索引缓冲区故名思义里面的数据是用于索引&#xff0c;主要作用是用于复用顶点缓冲区里的数据。…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 &#xff08;结构体大小计算及位段 详解请看&#xff1a;自定义类型&#xff1a;结构体进阶-CSDN博客&#xff09; 1.在32位系统环境&#xff0c;编译选项为4字节对齐&#xff0c;那么sizeof(A)和sizeof(B)是多少&#xff1f; #pragma pack(4)st…...

DBAPI如何优雅的获取单条数据

API如何优雅的获取单条数据 案例一 对于查询类API&#xff0c;查询的是单条数据&#xff0c;比如根据主键ID查询用户信息&#xff0c;sql如下&#xff1a; select id, name, age from user where id #{id}API默认返回的数据格式是多条的&#xff0c;如下&#xff1a; {&qu…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展&#xff0c;光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域&#xff0c;IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选&#xff0c;但在长期运行中&#xff0c;例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件&#xff0c;所以得把软件用docker打包起来&#xff0c;大部分功能都没问题&#xff0c;出了一个奇怪的事情。同样的代码&#xff0c;在本机上用vscode可以运行起来&#xff0c;但是打包之后在docker里出现了问题。使用的是dialog组件&#xff0c;…...

Java 二维码

Java 二维码 **技术&#xff1a;**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向&#xff0c;可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.

ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #&#xff1a…...