当前位置: 首页 > news >正文

C++初学者指南-5.标准库(第二部分)–随机数生成

C++初学者指南-5.标准库(第二部分)–随机数生成

文章目录

  • C++初学者指南-5.标准库(第二部分)–随机数生成
    • 基本概念
    • 例子
      • 统一随机数
      • 布尔值(“抛硬币”)
      • 正态分布
      • 具有独立概率的整数
    • 怎么做
      • 种子引擎
      • 使用自定义生成器
    • shuffle算法
    • 分布类型概述
      • 通用接口
      • 均匀分布
      • 采样分布
      • 伯努利分布
      • 正态分布
      • 泊松分布
      • 概览表
    • 引擎类型概述
      • 通用引擎接口
    • 相关内容

基本概念

#include <random>
random_engine_type engine {seed};
distribution_type distribution {parameters,…};
auto random_value = distribution(engine);

随机性的来源与分布是解耦的。

  • 随机数是由分布产生的
  • 分布使用均匀随机位引擎作为随机性源

此设计的优点

  • 没有单个全局状态,可以使用多个独立的随机引擎
  • 新的分发类型可以使用现有引擎
  • 可以更改随机性源,同时保持分布类型 (例如,将确定性引擎更改为使用硬件熵的引擎)

例子

统一随机数

#include <random>
// fixed seed(固定种子)
auto const seed = 123;
// Mersenne Twister random engine(梅森旋转随机引擎):
std::mt19937 urbg {seed};  
// generate random ints ∈ [1,6](生成1-6之间的随机整数)
std::uniform_int_distribution<int> distr1 {1, 6};
auto const value1 = distr1(urbg);
auto const value2 = distr1(urbg);
// generate random floats ∈ [-1.2,6.25)(生成-1.2到6.25之间的随机浮点数)
std::uniform_real_distribution<float> distr2 {-1.2f, 6.25f};
auto const value3 = distr2(urbg);

运行示例代码

布尔值(“抛硬币”)

#include <random>
auto const seed = 123;
auto urbg = std::mt19937 {seed};  
// unfair coin (40% 'true'):
double const p = 0.4;  
auto flip = std::bernoulli_distribution{p};
if (flip(urbg))  // 40% chancecout << "heads\n";
else  // 60% chancecout << "tails\n";

在这里插入图片描述
运行示例代码

正态分布

#include <random>
auto const seed = 123;
auto urbg = std::mt19937 {seed};  
double const mu = 4.0; 
double const sigma = 0.7; 
auto norm = std::normal_distribution<double>{mu,sigma};
auto value = norm(urbg);

在这里插入图片描述
运行示例程序

具有独立概率的整数

#include <random>
auto const seed = std::random_device{}();
auto urbg = std::mt19937{seed};  
std::vector<double> ws {1.0, 1.5, 0.5, 2.0};
std::discrete_distribution<int> distr {begin(ws), end(ws)};
std::vector<int> histo (ws.size(), 0);
int const N = 100000;
for (int k = 0; k < N; ++k) {auto const i = distr(urbg);++histo[i];
}
std::cout << "Histogram:\n";
for (auto x : histo) {auto const size = int(30 * x/double(N));cout << std::string(size,'-') << "o\n";
}

在这里插入图片描述
运行示例程序

怎么做

种子引擎

  • 使用一个整数类型的 engine_type::result_type
  • 或使用种子序列
  • 在构造函数中: engine_type { seed }
  • 或者使用成员函数  .seed( seed };
#include <random>
#include <chrono>  // clocks
auto e = std::mt19937{};
// seed engine with a constant
e.seed(123);
// … or with system clock ticks
auto const ticks = std::chrono::system_clock::now().time_since_epoch().count();
e.seed(ticks);
// … or with hardware entropy
auto const hes = std::random_device{}();
e.seed(hes);
// … or with a seed sequence
std::seed_seq s {1,5,3,7,0,9};
e.seed(s);
auto distr = std::uniform_real_distribution{-11.0, 15.3};
cout << distr(e) << '\n';

运行示例代码

使用自定义生成器

Lambda生成器

  • 在 lambda 捕获中初始化引擎和分发
  • 重要:lambda 必须标记为 mutable 因为内部状态 引擎和分配需要随着每次调用而改变
#include <random>
auto const seed = std::random_device{}();
auto coin_flip = [// init-capture engine + distribution:urbg = std::mt19937{seed},distr = std::bernoulli_distribution{0.5}
]() mutable -> bool { return distr(urbg); };
// use generator:
cout << coin_flip() << '\n';
auto roll = [urbg = std::mt19937{seed},distr = std::uniform_int_distribution<int>{1,6}
]() mutable -> int { return distr(urbg); };
cout << roll() << '\n';

运行示例程序

自定义生成器类
如果需要对参数进行更多控制

#include <random>
class DiceRoll {using engine_type = std::mt19937;// engine + distribution as members:engine_type urbg_;std::uniform_int_distribution<int> distr_;
public:using seed_type = engine_type::result_type;// constructor:explicit DiceRoll (int sides, seed_type seed = 0) noexcept: urbg_{seed}, distr_{1,sides} {}// allows to re-seedvoid seed (seed_type s) noexcept { urbg_.seed(s); }// call operator:int operator () () noexcept { return distr_(urbg_); }
};int main () {auto const seed = std::random_device{}();DiceRoll roll_d20 {20, seed};std::cout << roll_d20() << '\n';
}

运行示例程序

shuffle算法

在这里插入图片描述
cppreference

#include <algorithm>
#include <random>
// 32 bit mersenne twister engine
auto const seed = std::random_device{}();
auto reng = std::mt19937{seed};
std::vector<int> v {0,1,2,3,4,5,6,7,8};
shuffle(begin(v)+2, begin(v)+7, reng);  
for (int x : v) { cout << x <<' '; }  // 0 1 … 7 8

运行示例代码
在这里插入图片描述

分布类型概述

通用接口

构造

  • distribution_type distr; // with default params
  • distribution_type distr { parameter_object };
  • distribution_type distr { parameter1, parameter2,… parameterN };

生成值
auto random_value = distribution_object(engine_object);

常见访问器

  • distr.min() → smallest obtainable value(可获得的最小值)
  • distr.max() → largest obtainable value(可获得的最大值)
  • distr.param() → parameter object(参数对象)
  • distr.reset() : reset internal state(复位内部状态)

参数对象

  • distribution_type::param_type pars { parameter1, parameter2,… parameterN };
  • distribution_type distr1 { pars };
  • distribution_type distr2 { pars };
  • distribution_type distr3 { distr1.param() };

分布-特定参数访问器
distr.a() .b()  .m() .n() .s()  .alpha() .beta()  .lambda() .mean() .stddev() …

均匀分布

在这里插入图片描述

采样分布

在这里插入图片描述

伯努利分布

在这里插入图片描述

正态分布

在这里插入图片描述

泊松分布

在这里插入图片描述

概览表

在这里插入图片描述
在这里插入图片描述

引擎类型概述

通用引擎接口

在这里插入图片描述

线性同余引擎
std::minstd_rand0 // 1969 by Lewis, Goodman, Miller
std::minstd_rand // 1993 by Park, Miller, Stockmeyer
std::linear_congruential_engine

梅森旋转引擎
std::mt19937 // 32-bit, Matsumoto and Nishimura, 1998
std::mt19937_64 // 64-bit, Matsumoto and Nishimura, 2000
std::mersenne_twister_engine

带进位的减法引擎
std::ranlux24_base
std::ranlux48_base
std::subtract_with_carry_engine

引擎适配器
std::discard_block_engine
std::independent_bits_engine
std::shuffle_order_engine
基于适配器的引擎:
std::ranlux24 // discard_block_engine
std::ranlux48 // discard_block_engine
std::knuth_b // shuffle_order_engine

std::default_random_engine
取决于编译器/平台;通常是线性同余生成器。

非确定性熵源
std::random_device
表示一个非确定性随机数生成器,例如,使用硬件熵源。
如果没有可用的非确定性熵源,标准库的实现可以使用伪随机数引擎作为random_device。
测试设备是否真正是非确定性的:

std::random_device rd;
bool non_deterministic = rd.entropy() >  0;
bool deterministic     = rd.entropy() == 0;
auto distr = std::uniform_real_distribution{-1.0,1.0};
auto num = distr(rd);

注意:一些(较旧的)标准库实现尽管其随机设备是非确定性的,但仍然返回0。

相关内容

Random Generator: Combining Engine + Distribution
Random Number Sequences: Control Reproducibility
cppreference: Pseudo-Random Number Generation
cppreference: std::generate_canonical
What C++ Programmers Need to Know about Header  (Walter E. Brown, 2016)

附上原文链接
如果文章对您有用,请随手点个赞,谢谢!^_^

相关文章:

C++初学者指南-5.标准库(第二部分)–随机数生成

C初学者指南-5.标准库(第二部分)–随机数生成 文章目录 C初学者指南-5.标准库(第二部分)–随机数生成基本概念例子统一随机数布尔值&#xff08;“抛硬币”&#xff09;正态分布具有独立概率的整数 怎么做种子引擎使用自定义生成器 shuffle算法分布类型概述通用接口均匀分布采样…...

Unity2017在安卓下获取GPS位置时闪退的解决办法

在Unity使用低功耗蓝牙通信&#xff08;BLE&#xff09;需要用到设备的位置信息。但是调用Input.location.Start()程序会闪退。 解决办法&#xff1a;调用原生安卓接口。 参见《Unity2021通过aar调用Android方法》编写一个aar插件gpsplugin&#xff0c;在插件中提供获取GPS位…...

OpenGL ES 索引缓冲区(4)

OpenGL ES 索引缓冲区(4) 简述 本节会介绍索引缓冲区&#xff0c;索引缓冲区和顶点缓冲区类似&#xff0c;也是显存上的一段内存&#xff0c;只不过上面的数据用处不同&#xff0c;索引缓冲区故名思义里面的数据是用于索引&#xff0c;主要作用是用于复用顶点缓冲区里的数据。…...

01:(寄存器开发)点亮一个LED灯

寄存器开发 1、单片机的简介1.1、什么是单片机1.2、F1系列内核和芯片的系统架构1.3、存储器映像1.4、什么是寄存器 2、寄存器开发模板工程3、使用寄存器点亮一个LED4、代码改进15、代码改进2 本教程使用的是STM32F103C8T6最小系统板&#xff0c;教程来源B站up“嵌入式那些事”。…...

.Net 6.0 Windows平台如何判断当前电脑是否联网

最近在工作中开发需要判断当前电脑是否联网的需求&#xff0c;在网上找了一个调用window API来判断本机是否联网。具体请看下面介绍&#xff1a; 1.方法一&#xff08;调用winAPI&#xff09; [DllImport("wininet")] public static extern bool InternetGetConnec…...

微软准备了 Windows 11 24H2 ISO “OOBE/BypassNRO“命令依然可用

Windows 11 24H2 可能在未来几周内开始推出。 微软已经要求 OEM 遵循新的指南准备好 Windows 11 24H2 就绪的驱动程序&#xff0c;并且现在已经开始准备媒体文件 (.ISO)。 OEM ISO 的链接已在微软服务器上发布。 一个标有"X23-81971_26100.1742.240906-0331.ge_release_sv…...

MacOS 终端执行安装 Brew

在配置新的 Mac 环境时&#xff0c;如果你发现终端中无法识别 brew 命令&#xff0c;可以按照以下步骤进行解决。 步骤 1&#xff1a;确保网络稳定 为了避免安装过程中出现中断&#xff0c;建议使用 Wi-Fi 或有线连接&#xff0c;不推荐使用移动网络。 步骤 2&#xff1a;打…...

【设计模式-解释模式】

定义 解释器模式是一种行为设计模式&#xff0c;用于定义一种语言的文法&#xff0c;并提供一个解释器来处理该语言的句子。它通过为每个语法规则定义一个类&#xff0c;使得可以将复杂的表达式逐步解析和求值。这种模式适用于需要解析和执行语法规则的场景。 UML图 组成角色…...

51单片机应用开发(进阶)---数码管+按键+蜂鸣器(电磁炉显示模拟)

实现目标 1、加强数码管、按键的学习&#xff0c;实现数码显示变量数据&#xff08;四位数的显示&#xff09;&#xff1b; 2、4位数码2个按键无源蜂鸣器实现模拟电磁炉功率调节及显示&#xff1b; 一、内容描述 功能描述&#xff1a;1、开机显示电磁炉功率300&#xff0c;每…...

Emergency Stop (ES)

文章目录 1. 介绍2. Feature List3. 紧急停止信号触发方式3.1 Port触发紧急停止信号3.2 SMU事件触发紧急停止信号3.3 软件触发紧急停止信号 4. 应用场景4.1 Port4.2 MSC 1. 介绍 Emergency Stop (ES)是Ifx System Control Units (SCU)六大模块之一。详细信息可以参考Infineon-…...

[C++][第三方库][gtest]详细讲解

目录 1.介绍2.安装3.使用1.头文件包含2.框架初始化接口3.调用测试样例4.TEST宏5.断言宏6.示例 1.介绍 gtest是一个跨平台的C单元测试框架&#xff0c;由Google公司发布gtest是为了在不同平台上为编写C单元测试而生成的&#xff0c;它提供了丰富的断言、致命和非致命判断、参数…...

【Java数据结构】 链表

【本节目标】 1. ArrayList 的缺陷 2. 链表 3. 链表相关 oj题目 一. ArrayList的缺陷 上节课已经熟悉了ArrayList 的使用&#xff0c;并且进行了简单模拟实现。通过源码知道&#xff0c; ArrayList 底层使用数组来存储元素&#xff1a; public class ArrayList<E>…...

前端——Ajax和jQuery

一、Ajax Ajax即“Asynchronous Javascript And XML”&#xff08;异步 JavaScript 和 XML&#xff09;&#xff0c; 通过 JS 异步的向服务器发送请 求并接收响应数据。 同步访问&#xff1a;当客户端向服务器发送请求时&#xff0c;服务器在处理的过程中&#xff0c;浏览器…...

C++-vector模拟实现

###vector底层相当于是数组&#xff0c;查看源码可以发现&#xff0c;这个类的私有成员变量是三个迭代器&#xff1b;在实现时迭代器就可以当作是vector里面的元素的指针类型&#xff1b; ###vector是一个类模板&#xff0c;实现时也应当按照这样的写法用一个模板去实现&#…...

Activity

69[toc] 1.启停活动页面 1.Activity启动和结束 从当前页面跳到新页面 startActivity(new Intent(this, ActFinishActivity.class));从当前页面返回上一个页面&#xff0c;相当于关闭当前页面 finish();2.Activity生命周期 官方描述生命周期 onCreate&#xff1a;创建活…...

【力扣 | SQL题 | 每日四题】力扣1581, 1811, 1821, 1831

今天的题目就1811这个比较难&#xff0c;其他非常的基础。 1. 力扣1581&#xff1a;进店却未进行过交易的顾客 1.1 题目&#xff1a; 表&#xff1a;Visits ---------------------- | Column Name | Type | ---------------------- | visit_id | int | | customer…...

洛谷【P1955 [NOI2015] 程序自动分析】

反思&#xff1a; 这道题一眼就是并查集 但是数据太大 mle和re都是有可能的我看了题解才知道是离散化数组加并查集离散化再两个月前我觉得好难啊 那道题跟本看不懂 现在觉得还行 离散化思路&#xff1a; 需要一个离散记录数组----ls[N]用来记录下出现的数 步骤&#xff1a; …...

Swift并发笔记

1.同步和异步 说到线程的执行方式&#xff0c;最基本的一组概念是同步和异步。所谓同步&#xff0c;就是在操作执行完成之前&#xff0c;运行操作的这个线程都会被占用&#xff0c;直到函数最终被抛出或返回。Swift5.5之前&#xff0c;func关键字声明的所有的函数都是同步的。…...

React 组件命名规范

在 React 项目中&#xff0c;如果希望保持组件命名的一致性&#xff0c;并防止在引入时出现不同名称的问题&#xff0c;可以遵循以下的组件规范&#xff1a; 1、默认导出组件&#xff1a; 所有特殊要求的组件&#xff08;如页面组件或根组件&#xff09;应该使用 export defau…...

eNSP网络配置指南:IP设置、DNS、Telnet、DHCP与路由表管理

1.eNSP基本操作和路由器IP配置命令 登录设备&#xff1a;通过Console口或通过eNSP的Telnet/SSH客户端登录到设备。进入特权模式&#xff1a;输入system-view进入系统视图。接口配置&#xff1a; 进入接口视图&#xff0c;例如interface GigabitEthernet0/0/0。配置IP地址和子网…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用&#xff0c;操作系统&#xff1a;Ubuntu24.04&#xff0c;Neofj版本&#xff1a;2025.04.0。 Apt安装 Neofj可以进行官网安装&#xff1a;Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

day52 ResNet18 CBAM

在深度学习的旅程中&#xff0c;我们不断探索如何提升模型的性能。今天&#xff0c;我将分享我在 ResNet18 模型中插入 CBAM&#xff08;Convolutional Block Attention Module&#xff09;模块&#xff0c;并采用分阶段微调策略的实践过程。通过这个过程&#xff0c;我不仅提升…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

多模态图像修复系统:基于深度学习的图片修复实现

多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...

【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error

在前端开发中&#xff0c;JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作&#xff08;如 Promise、async/await 等&#xff09;&#xff0c;开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝&#xff08;r…...

小木的算法日记-多叉树的递归/层序遍历

&#x1f332; 从二叉树到森林&#xff1a;一文彻底搞懂多叉树遍历的艺术 &#x1f680; 引言 你好&#xff0c;未来的算法大神&#xff01; 在数据结构的世界里&#xff0c;“树”无疑是最核心、最迷人的概念之一。我们中的大多数人都是从 二叉树 开始入门的&#xff0c;它…...

【Linux】Linux安装并配置RabbitMQ

目录 1. 安装 Erlang 2. 安装 RabbitMQ 2.1.添加 RabbitMQ 仓库 2.2.安装 RabbitMQ 3.配置 3.1.启动和管理服务 4. 访问管理界面 5.安装问题 6.修改密码 7.修改端口 7.1.找到文件 7.2.修改文件 1. 安装 Erlang 由于 RabbitMQ 是用 Erlang 编写的&#xff0c;需要先安…...