当前位置: 首页 > news >正文

洛谷【P1955 [NOI2015] 程序自动分析】

反思:

  • 这道题一眼就是并查集 但是数据太大 mle和re都是有可能的
  • 我看了题解才知道是离散化数组加并查集
  • 离散化再两个月前我觉得好难啊 那道题跟本看不懂 现在觉得还行

离散化思路:

需要一个离散记录数组----ls[N]用来记录下出现的数
步骤:
先存数组
排序
unique去重得长度
然后用lower_bound迭代器赋值
unique用法是int len=unique(li+1,li+1+cnt)-li-1;  (start,start+总长度)-start  得到最后长度’ne[i].a=lower_bound(li+1,li+len+1,ne[i].a)-li-1;
lower_bound的用法:返回大于等于ne[i].a的最早位置
写法跟上面类似:(start,start+长度,数大小)-start

题目思路:

先离散化缩小区间 再进行并查集操作 结构体要排序 按0和1排 1在前面 对于循环中是0的进行判断祖先节点是否相等 相等就矛盾 打印no 直到循环结束flag还为1的话就打印yes

ac代码
#include<bits/stdc++.h>
using namespace std;
//离散化步骤:排序,去重,赋值
const int N=300000;
int li[N],fa[N];
void first(int x){for(int i=1;i<=x;i++) fa[i]=i;
}
int find(int x){if(fa[x]==x) return x;fa[x]=find(fa[x]);return fa[x];
}
void merge(int a,int b){int t1=find(a),t2=find(b);fa[t1]=t2;
}
struct node{int a,b,c;
}ne[100010];
bool cmp(node a,node b){return a.c>b.c;
}
int main(){int n;cin>>n;while(n--){memset(fa,0,sizeof(fa));memset(li,0,sizeof(li));int t;cin>>t;int cnt=0;for(int i=1;i<=t;i++){int x,y,z;cin>>x>>y>>z;ne[i]={x,y,z};li[++cnt]=x,li[++cnt]=y;//输入完成 开始离散}sort(li+1,li+cnt+1);//从1开始int len=unique(li+1,li+1+cnt)-li-1;// cout<<len<<endl;//len是用来  loow_bound里面的和初始化first的for(int i=1;i<=t;i++){//离散赋值ne[i].a=lower_bound(li+1,li+len+1,ne[i].a)-li-1;ne[i].b=lower_bound(li+1,li+len+1,ne[i].b)-li-1;}// for(int i=1;i<=t;i++){// //离散赋值// // ne[i].a=lower_bound(li+1,li+cnt+1,ne[i].a)-li-1;// // ne[i].b=lower_bound(li+1,li+cnt+1,ne[i].b)-li-1;// cout<<ne[i].a<<" "<<ne[i].b<<endl;// }first(len);bool flag=1;sort(ne+1,ne+1+t,cmp);// for(int i=1;i<=t;i++){// cout<<ne[i].a<<" "<<ne[i].b<<" "<<ne[i].c<<endl;// }'for(int i=1;i<=t;i++){if(ne[i].c==1){merge(ne[i].a,ne[i].b);}else if(ne[i].c==0){if(find(ne[i].a)==find(ne[i].b)){cout<<"NO"<<endl;flag=0;break;}}}if(flag==1) cout<<"YES"<<endl;}return 0;
}

相关文章:

洛谷【P1955 [NOI2015] 程序自动分析】

反思&#xff1a; 这道题一眼就是并查集 但是数据太大 mle和re都是有可能的我看了题解才知道是离散化数组加并查集离散化再两个月前我觉得好难啊 那道题跟本看不懂 现在觉得还行 离散化思路&#xff1a; 需要一个离散记录数组----ls[N]用来记录下出现的数 步骤&#xff1a; …...

Swift并发笔记

1.同步和异步 说到线程的执行方式&#xff0c;最基本的一组概念是同步和异步。所谓同步&#xff0c;就是在操作执行完成之前&#xff0c;运行操作的这个线程都会被占用&#xff0c;直到函数最终被抛出或返回。Swift5.5之前&#xff0c;func关键字声明的所有的函数都是同步的。…...

React 组件命名规范

在 React 项目中&#xff0c;如果希望保持组件命名的一致性&#xff0c;并防止在引入时出现不同名称的问题&#xff0c;可以遵循以下的组件规范&#xff1a; 1、默认导出组件&#xff1a; 所有特殊要求的组件&#xff08;如页面组件或根组件&#xff09;应该使用 export defau…...

eNSP网络配置指南:IP设置、DNS、Telnet、DHCP与路由表管理

1.eNSP基本操作和路由器IP配置命令 登录设备&#xff1a;通过Console口或通过eNSP的Telnet/SSH客户端登录到设备。进入特权模式&#xff1a;输入system-view进入系统视图。接口配置&#xff1a; 进入接口视图&#xff0c;例如interface GigabitEthernet0/0/0。配置IP地址和子网…...

初步认识产品经理

产品经理 思考问题的维度 1️⃣为什么要抓住核心用户&#xff1f; 所有和产品有关系的群体就是用户&#xff0c;存在共性和差异了解用户的付费点&#xff0c;更好的优化产品是否使用&#xff1a;&#xff08;目标用户-已使用产品&#xff1a;种子用户-尝鲜&#xff1b;核心用…...

web前端面试中拍摄的真实js面试题(真图)

web前端面试中拍摄的真实js面试题&#xff08;真图&#xff09; WechatIMG258.jpeg WechatIMG406.jpeg WechatIMG407.jpeg WechatIMG922.jpeg WechatIMG1063.jpeg © 著作权归作者所有,转载或内容合作请联系作者 喜欢的朋友记得点赞、收藏、关注哦&#xff01;&#xff01;…...

python 人工智能 机器学习 当损失函数的数值变成 `nan` 时,这通常意味着在模型训练过程中出现了数值不稳定性以及解决办法,数据分析

当损失函数的数值变成 nan 时&#xff0c;这通常意味着在模型训练过程中出现了数值不稳定性。以下是一些可能导致这个问题的原因以及相应的解决方法&#xff1a; 1. **学习率过高**&#xff1a;如果学习率设置得过高&#xff0c;可能会导致梯度爆炸&#xff0c;从而导致损失函…...

Kafka快速实战与基本原理详解

笔记:https://note.youdao.com/ynoteshare/index.html?id=b0357bdb4821ed2e35ecdbdacd65aa06&type=note&_time=1727570043631 启动kafka之前先启动zookper 看看ZK里面都有什么数据 : 刚开始什么数据都没有 接下来启动kafka,启动好后,日志在这里看: 启动好了kaf…...

tftp传文件被服务器拒绝进入tftp: server error: (768) Access to staonline.pcap denied

环境&#xff1a;测试一个ac下挂ap&#xff0c;ap下的抓包文件传出时&#xff0c;出现问题&#xff1a; ac的wan口ip是192.168.186.167/24&#xff0c;gw是192.168.186.1&#xff0c;下挂ap的ip是192.168.202.199/24&#xff0c;ac上开子接口192.168.202.1/24&#xff0c;ac上开…...

express,生成用户登录后的 token

在 Node.js 中使用 Express 框架生成用户登录后的 token&#xff0c;通常会涉及到以下几个步骤&#xff1a; 设置 Express 应用&#xff1a;首先&#xff0c;你需要有一个基本的 Express 应用。安装必要的中间件&#xff1a;例如 jsonwebtoken&#xff08;JWT&#xff09;用于…...

银河麒麟桌面操作系统修改默认Shell为Bash

银河麒麟桌面操作系统修改默认Shell为Bash &#x1f490;The Begin&#x1f490;点点关注&#xff0c;收藏不迷路&#x1f490; 在银河麒麟桌面操作系统&#xff08;ARM版&#xff09;中&#xff0c;若要将默认Shell从Dash改为Bash&#xff0c;可执行以下步骤&#xff1a; 打开…...

卷积神经网络(Convolutional Neural Networks, CNN)

卷积神经网络&#xff08;Convolutional Neural Networks, CNN&#xff09;是深度学习领域中用于处理具有网格结构的输入&#xff08;如图像和视频&#xff09;的神经网络模型。下面以最简单、直观的方式概述CNN的主要流程及其基本概念&#xff1a; 1. 输入层 概念&#xff1a…...

SpringBoot系列 启动流程

文章目录 SpringApplicationSpringApplication#run 启动流程BootstrapContextSpringApplicationRunListenersprepareEnvironmentconfigureEnvironmentconfigurePropertySourcesconfigureProfiles 上下文初始化prepareContextrefreshContextprepareRefreshobtainFreshBeanFactor…...

vgg19提取特征

一般来说&#xff0c;大家使用VGG16&#xff0c;用的是第四列的网络架构&#xff0c;而使用VGG19&#xff0c;使用的就是第六列的网络架构。 使用vgg进行提取特征&#xff0c;在这个项目中&#xff0c;使用的就是每一块卷积层的第一层。 import torch.nn as nn from torchvis…...

Qt 中的 QChartView

深入理解 Qt 的 QChartView&#xff1a;图表展示与交互 QChartView 是 Qt Charts 模块中的一个核心类&#xff0c;它用于在 Qt 应用程序中显示图表&#xff0c;并支持多种用户交互方式。它继承自 QGraphicsView&#xff0c;通过封装 QChart&#xff0c;为用户提供了强大的图表…...

cheese安卓版纯本地离线文字识别插件

目的 cheese自动化平台是一款可以模拟鼠标和键盘操作的自动化工具。它可以帮助用户自动完成一些重复的、繁琐的任务&#xff0c;节省大量人工操作的时间。可以采用Vscode、IDEA编写&#xff0c;支持Java、Python、nodejs、GO、Rust、Lua。cheese也包含图色功能&#xff0c;识别…...

【C++】多肽

目录 一 多肽定义 1. 多肽的构成条件 1 例一 2 例二 2. 虚函数 3. 虚函数重写的两个意外 1 协变 2 析构函数的重写 二 关键字override 和 final 1. final 2.override 三 三重对比 1. 练习 四 多肽的原理 1. 多肽调用和普通调用 2.虚函数表 3. 分析 4. 原理 …...

Linux下Socket编程

1. Socket简介 Socket是什么&#xff1f; Socket是一种进程间通信的机制&#xff0c;通过它应用程序可以通过网络进行数据传输。Socket提供了一种跨平台的接口&#xff0c;使得同样的代码可以在不同的操作系统上运行。Socket类型 流式套接字&#xff08;SOCK_STREAM&#xff0…...

Scrapy 爬虫的大模型支持

使用 Scrapy 时&#xff0c;你可以轻松使用大型语言模型 (LLM) 来自动化或增强你的 Web 解析。 有多种使用 LLM 来帮助进行 Web 抓取的方法。在本指南中&#xff0c;我们将在每个页面上调用一个 LLM&#xff0c;从中抽取我们定义的一组属性&#xff0c;而无需编写任何选择器或…...

数据仓库简介(一)

数据仓库概述 1. 什么是数据仓库&#xff1f; 数据仓库&#xff08;Data Warehouse&#xff0c;简称 DW&#xff09;是由 Bill Inmon 于 1990 年提出的一种用于数据分析和挖掘的系统。它的主要目标是通过分析和挖掘数据&#xff0c;为不同层级的决策提供支持&#xff0c;构成…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个&#xff1f;3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制&#xff08;过半机制&#xff0…...

【2025年】解决Burpsuite抓不到https包的问题

环境&#xff1a;windows11 burpsuite:2025.5 在抓取https网站时&#xff0c;burpsuite抓取不到https数据包&#xff0c;只显示&#xff1a; 解决该问题只需如下三个步骤&#xff1a; 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

DBAPI如何优雅的获取单条数据

API如何优雅的获取单条数据 案例一 对于查询类API&#xff0c;查询的是单条数据&#xff0c;比如根据主键ID查询用户信息&#xff0c;sql如下&#xff1a; select id, name, age from user where id #{id}API默认返回的数据格式是多条的&#xff0c;如下&#xff1a; {&qu…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...