当前位置: 首页 > news >正文

卷积神经网络(Convolutional Neural Networks, CNN)

卷积神经网络(Convolutional Neural Networks, CNN)是深度学习领域中用于处理具有网格结构的输入(如图像和视频)的神经网络模型。下面以最简单、直观的方式概述CNN的主要流程及其基本概念:

1. 输入层

  • 概念:输入层直接接收原始数据,比如一张图片,通常是一张二维或三维的矩阵,包含像素信息。

  • 流程:例如,输入一张28x28像素的灰度图像,形成一个28x28的矩阵,每个元素代表一个像素的亮度值。

2. 卷积层

  • 概念:卷积层通过卷积核(或称滤波器)扫描输入数据,识别特定的特征。卷积核是一个小的矩阵,它会与输入数据的局部区域做元素相乘再求和的操作。

  • 流程:一个3x3的卷积核在输入图像上滑动,每次覆盖9个像素,计算一个值,这样就形成了一个“特征图”,能够捕捉图像中的基本特征,如边缘、纹理等。

3. 激活函数

  • 概念:激活函数引入了非线性变换,使得网络能够学习更复杂的模式。

  • 流程:通常在卷积操作后应用,如ReLU(Rectified Linear Unit),它会将所有负值置为0,保留和放大正值,增强网络的表达能力。

4. 池化层

  • 概念:池化层用于降低数据的维度,同时保留重要信息,增强模型对位置轻微变化的鲁棒性。

  • 流程:常见的有最大池化(取局部区域的最大值)和平均池化(取局部区域的平均值),通常使用2x2的窗口,步长为2,将特征图的尺寸减半。

5. 全连接层

  • 概念:全连接层连接所有神经元,用于整合所有特征,做出最终的分类或回归预测。

  • 流程:将卷积和池化后的多维特征图展平为一维向量,通过权重矩阵映射到分类标签的空间,输出每个类别的概率。

6. 输出层

  • 概念:输出层给出最终的分类决策或回归结果。

  • 流程:在分类任务中,通常通过softmax函数将全连接层的输出转换为概率分布,预测概率最高的类别为最终结果。

整个过程可以概括为:原始图像输入 → 卷积提取特征 → 激活非线性变换 → 池化降维 → 全连接层整合特征 → 输出层给出预测结果。

通过多层的卷积和池化处理,CNN能够从原始像素中自动学习和提取多层次的特征,最终用于识别和分类。

class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()self.conv1 = nn.Sequential(         # 输入大小 (1, 28, 28)nn.Conv2d(in_channels=1,              # 灰度图out_channels=16,            # 要得到几 多少个特征图kernel_size=5,              # 卷积核大小stride=1,                   # 步长padding=2,                  # 如果希望卷积后大小跟原来一样,需要设置padding=(kernel_size-1)/2 if stride=1),                              # 输出的特征图为 (16, 28, 28)nn.ReLU(),                      # relu层nn.MaxPool2d(kernel_size=2),    # 进行池化操作(2x2 区域), 输出结果为: (16, 14, 14))self.conv2 = nn.Sequential(         # 下一个套餐的输入 (16, 14, 14)nn.Conv2d(16, 32, 5, 1, 2),     # 输出 (32, 14, 14)nn.ReLU(),                      # relu层nn.Conv2d(32, 32, 5, 1, 2),nn.ReLU(),nn.MaxPool2d(2),                # 输出 (32, 7, 7))self.conv3 = nn.Sequential(         # 下一个套餐的输入 (16, 14, 14)nn.Conv2d(32, 64, 5, 1, 2),     # 输出 (32, 14, 14)nn.ReLU(),             # 输出 (32, 7, 7))self.out = nn.Linear(64 * 7 * 7, 10)   # 全连接层得到的结果def forward(self, x):x = self.conv1(x)x = self.conv2(x)x = self.conv3(x)x = x.view(x.size(0), -1)           # flatten操作,结果为:(batch_size, 32 * 7 * 7)output = self.out(x)return output

1. 再加入一层卷积,效果怎么样?

在神经网络中,增加一层卷积层通常可以增强模型的表征能力,使其能够学习到更复杂的特征。但是,这同样会增加模型的复杂度,可能导致模型训练时间变长,以及在数据量不足时容易发生过拟合。具体效果如何,需要通过实验验证。

例如,如果原模型有一层卷积层,你可以尝试在其后增加另一层卷积层,同时考虑使用更小的滤波器(例如 3x3)和合适的步长与填充,以保持输出尺寸不变。增加的卷积层可以使用ReLU激活函数,以保持非线性。

conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
conv2 = nn.Conv2d(out_channels, out_channels_next, kernel_size=3, stride=1, padding=1)

在实际操作中,需要监控模型的训练和验证集性能,确保增加的复杂性带来了实际的性能提升。

2. 当前任务中为什么全连接层是3277?每一个数字代表什么含义?

在卷积神经网络中,全连接层前的尺寸通常反映了特征图的大小和深度。3277中的每个数字有其特定含义:

  • 32:代表特征图的深度(也就是上一层输出的通道数)。这通常是指在卷积层或池化层后,模型学习到的特征的数量。每个通道可以看作是模型学习到的某种特定特征的响应。

  • 77:表示特征图的宽度和高度。这是经过一系列卷积和池化操作后,原始输入图像被降采样(或下采样)后的尺寸。

以典型的CNN架构为例,假设输入图像为224x224像素,使用一个7x7的卷积核,经过两次最大池化(每次池化核大小为2x2,步长为2),特征图的尺寸会从224x224降为56x56,再降为28x28,最后到14x14。如果在14x14的特征图上再使用卷积层,特征图的深度会增加,但宽度和高度保持不变,直到最后被展平(flatten)成1D向量送入全连接层。

因此,如果最终特征图的深度为32,而宽度和高度均为7,展平后的向量长度即为3277,这是在进入全连接层前,模型对图像特征的最终表征。全连接层将使用这些特征进行最终的分类决策。

相关文章:

卷积神经网络(Convolutional Neural Networks, CNN)

卷积神经网络(Convolutional Neural Networks, CNN)是深度学习领域中用于处理具有网格结构的输入(如图像和视频)的神经网络模型。下面以最简单、直观的方式概述CNN的主要流程及其基本概念: 1. 输入层 概念&#xff1a…...

SpringBoot系列 启动流程

文章目录 SpringApplicationSpringApplication#run 启动流程BootstrapContextSpringApplicationRunListenersprepareEnvironmentconfigureEnvironmentconfigurePropertySourcesconfigureProfiles 上下文初始化prepareContextrefreshContextprepareRefreshobtainFreshBeanFactor…...

vgg19提取特征

一般来说,大家使用VGG16,用的是第四列的网络架构,而使用VGG19,使用的就是第六列的网络架构。 使用vgg进行提取特征,在这个项目中,使用的就是每一块卷积层的第一层。 import torch.nn as nn from torchvis…...

Qt 中的 QChartView

深入理解 Qt 的 QChartView:图表展示与交互 QChartView 是 Qt Charts 模块中的一个核心类,它用于在 Qt 应用程序中显示图表,并支持多种用户交互方式。它继承自 QGraphicsView,通过封装 QChart,为用户提供了强大的图表…...

cheese安卓版纯本地离线文字识别插件

目的 cheese自动化平台是一款可以模拟鼠标和键盘操作的自动化工具。它可以帮助用户自动完成一些重复的、繁琐的任务,节省大量人工操作的时间。可以采用Vscode、IDEA编写,支持Java、Python、nodejs、GO、Rust、Lua。cheese也包含图色功能,识别…...

【C++】多肽

目录 一 多肽定义 1. 多肽的构成条件 1 例一 2 例二 2. 虚函数 3. 虚函数重写的两个意外 1 协变 2 析构函数的重写 二 关键字override 和 final 1. final 2.override 三 三重对比 1. 练习 四 多肽的原理 1. 多肽调用和普通调用 2.虚函数表 3. 分析 4. 原理 …...

Linux下Socket编程

1. Socket简介 Socket是什么? Socket是一种进程间通信的机制,通过它应用程序可以通过网络进行数据传输。Socket提供了一种跨平台的接口,使得同样的代码可以在不同的操作系统上运行。Socket类型 流式套接字(SOCK_STREAM&#xff0…...

Scrapy 爬虫的大模型支持

使用 Scrapy 时,你可以轻松使用大型语言模型 (LLM) 来自动化或增强你的 Web 解析。 有多种使用 LLM 来帮助进行 Web 抓取的方法。在本指南中,我们将在每个页面上调用一个 LLM,从中抽取我们定义的一组属性,而无需编写任何选择器或…...

数据仓库简介(一)

数据仓库概述 1. 什么是数据仓库? 数据仓库(Data Warehouse,简称 DW)是由 Bill Inmon 于 1990 年提出的一种用于数据分析和挖掘的系统。它的主要目标是通过分析和挖掘数据,为不同层级的决策提供支持,构成…...

Kafka和RabbitMQ区别

RabbitMQ的消息延迟是微秒级,Kafka是毫秒级(1毫秒1000微秒) 延迟消息是指生产者发送消息发送消息后,不能立刻被消费者消费,需要等待指定的时间后才可以被消费。 Kafka的单机呑吐量是十万级,RabbitMQ是万级…...

go-zero学习

go-zero官网: https://go-zero.dev/docs/tasks 好文: https://blog.csdn.net/m0_63629756/article/details/136599547 视频: https://www.bilibili.com/video/BV18JxUeyECg 微服务基础 根目录下,一个文件夹就是一个微服务。如果微…...

python如何查询函数

1、通用的帮助函数help() 使用help()函数来查看函数的帮助信息。 如: import requests help(requests) 会有类似如下输出: 2、查询函数信息 ★查看模块下的所有函数: dir(module_name) #module_name是要查询的函数名 如: i…...

计算机视觉与深度学习 | 从激光雷达数据中提取地面点和非地面点(附matlab代码)

===================================================== github:https://github.com/MichaelBeechan CSDN:https://blog.csdn.net/u011344545 ===================================================== 激光雷达数据 使用velodyneFileReader函数从P...

vulnhub-wakanda 1靶机

vulnhub:wakanda: 1 ~ VulnHub 导入靶机,放在kali同网段,扫描 靶机在192.168.81.5,扫描端口 四个端口,详细扫描一下 似乎没什么值得注意的,先看网站 就这一个页面,点按钮也没反应,扫…...

Bilibili视频如何保存到本地

Bilibili(哔哩哔哩)作为中国领先的视频分享平台之一,汇聚了大量的优质内容,从搞笑动画、综艺节目到专业教程,应有尽有。许多用户时常会遇到这样的需求:希望将视频保存到本地,方便离线观看或者保存珍藏。由于版权保护等…...

C++之多线程

前言 多线程和多进程是并发编程的两个核心概念,它们在现代计算中都非常重要,尤其是在需要处理大量数据、提高程序性能和响应能力的场景中。 多线程的重要性: 资源利用率:多线程可以在单个进程中同时执行多个任务,这可以更有效地利用CPU资源,特别是在多核处理器上。 性…...

《C++音频降噪秘籍:让声音纯净如初》

在音频处理领域,降噪是一项至关重要的任务。无论是录制音乐、语音通话还是音频后期制作,都需要有效地去除背景噪声,以获得清晰、纯净的音频效果。在 C中实现高效的音频降噪处理,可以为音频应用带来更高的质量和更好的用户体验。本…...

C(十)for循环 --- 黑神话情景

前言: "踏过三界宝刹,阅过四洲繁华。笑过五蕴痴缠,舍过六根牵挂。怕什么欲念不休,怕什么浪迹天涯。步履不停,便是得救之法。" 国际惯例,开篇先喝碗鸡汤。 今天,杰哥写的 for 循环相…...

记录一次docker报错无法访问文件夹,权限错误问题

记录一次docker报错无法访问文件夹,权限错误问题 1. 背景 使用docker安装photoview,为其分配了一个cache目录,用户其缓存数据。在运行过程中,扫描文件后显示如下错误 could not make album image cache directory: mkdir /app/c…...

react crash course 2024(8) useEffect

引入 import { useEffect } from react; useEffect – React 中文文档useEffect 是一个 React Hook,它允许你 将组件与外部系统同步。 有些组件需要与网络、某些浏览器 API 或第三方库保持连接,当它们显示在页面上时。这些系统不受 React 控制&#xff0…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

【kafka】Golang实现分布式Masscan任务调度系统

要求&#xff1a; 输出两个程序&#xff0c;一个命令行程序&#xff08;命令行参数用flag&#xff09;和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽&#xff0c;然后将消息推送到kafka里面。 服务端程序&#xff1a; 从kafka消费者接收…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

Java毕业设计:WML信息查询与后端信息发布系统开发

JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发&#xff0c;实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构&#xff0c;服务器端使用Java Servlet处理请求&#xff0c;数据库采用MySQL存储信息&#xff0…...

push [特殊字符] present

push &#x1f19a; present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中&#xff0c;push 和 present 是两种不同的视图控制器切换方式&#xff0c;它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...

JavaScript 数据类型详解

JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型&#xff08;Primitive&#xff09; 和 对象类型&#xff08;Object&#xff09; 两大类&#xff0c;共 8 种&#xff08;ES11&#xff09;&#xff1a; 一、原始类型&#xff08;7种&#xff09; 1. undefined 定…...

【Linux系统】Linux环境变量:系统配置的隐形指挥官

。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量&#xff1a;setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...