卷积神经网络(Convolutional Neural Networks, CNN)
卷积神经网络(Convolutional Neural Networks, CNN)是深度学习领域中用于处理具有网格结构的输入(如图像和视频)的神经网络模型。下面以最简单、直观的方式概述CNN的主要流程及其基本概念:
1. 输入层
-
概念:输入层直接接收原始数据,比如一张图片,通常是一张二维或三维的矩阵,包含像素信息。
-
流程:例如,输入一张28x28像素的灰度图像,形成一个28x28的矩阵,每个元素代表一个像素的亮度值。
2. 卷积层
-
概念:卷积层通过卷积核(或称滤波器)扫描输入数据,识别特定的特征。卷积核是一个小的矩阵,它会与输入数据的局部区域做元素相乘再求和的操作。
-
流程:一个3x3的卷积核在输入图像上滑动,每次覆盖9个像素,计算一个值,这样就形成了一个“特征图”,能够捕捉图像中的基本特征,如边缘、纹理等。
3. 激活函数
-
概念:激活函数引入了非线性变换,使得网络能够学习更复杂的模式。
-
流程:通常在卷积操作后应用,如ReLU(Rectified Linear Unit),它会将所有负值置为0,保留和放大正值,增强网络的表达能力。
4. 池化层
-
概念:池化层用于降低数据的维度,同时保留重要信息,增强模型对位置轻微变化的鲁棒性。
-
流程:常见的有最大池化(取局部区域的最大值)和平均池化(取局部区域的平均值),通常使用2x2的窗口,步长为2,将特征图的尺寸减半。
5. 全连接层
-
概念:全连接层连接所有神经元,用于整合所有特征,做出最终的分类或回归预测。
-
流程:将卷积和池化后的多维特征图展平为一维向量,通过权重矩阵映射到分类标签的空间,输出每个类别的概率。
6. 输出层
-
概念:输出层给出最终的分类决策或回归结果。
-
流程:在分类任务中,通常通过softmax函数将全连接层的输出转换为概率分布,预测概率最高的类别为最终结果。
整个过程可以概括为:原始图像输入 → 卷积提取特征 → 激活非线性变换 → 池化降维 → 全连接层整合特征 → 输出层给出预测结果。
通过多层的卷积和池化处理,CNN能够从原始像素中自动学习和提取多层次的特征,最终用于识别和分类。
class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()self.conv1 = nn.Sequential( # 输入大小 (1, 28, 28)nn.Conv2d(in_channels=1, # 灰度图out_channels=16, # 要得到几 多少个特征图kernel_size=5, # 卷积核大小stride=1, # 步长padding=2, # 如果希望卷积后大小跟原来一样,需要设置padding=(kernel_size-1)/2 if stride=1), # 输出的特征图为 (16, 28, 28)nn.ReLU(), # relu层nn.MaxPool2d(kernel_size=2), # 进行池化操作(2x2 区域), 输出结果为: (16, 14, 14))self.conv2 = nn.Sequential( # 下一个套餐的输入 (16, 14, 14)nn.Conv2d(16, 32, 5, 1, 2), # 输出 (32, 14, 14)nn.ReLU(), # relu层nn.Conv2d(32, 32, 5, 1, 2),nn.ReLU(),nn.MaxPool2d(2), # 输出 (32, 7, 7))self.conv3 = nn.Sequential( # 下一个套餐的输入 (16, 14, 14)nn.Conv2d(32, 64, 5, 1, 2), # 输出 (32, 14, 14)nn.ReLU(), # 输出 (32, 7, 7))self.out = nn.Linear(64 * 7 * 7, 10) # 全连接层得到的结果def forward(self, x):x = self.conv1(x)x = self.conv2(x)x = self.conv3(x)x = x.view(x.size(0), -1) # flatten操作,结果为:(batch_size, 32 * 7 * 7)output = self.out(x)return output
1. 再加入一层卷积,效果怎么样?
在神经网络中,增加一层卷积层通常可以增强模型的表征能力,使其能够学习到更复杂的特征。但是,这同样会增加模型的复杂度,可能导致模型训练时间变长,以及在数据量不足时容易发生过拟合。具体效果如何,需要通过实验验证。
例如,如果原模型有一层卷积层,你可以尝试在其后增加另一层卷积层,同时考虑使用更小的滤波器(例如 3x3)和合适的步长与填充,以保持输出尺寸不变。增加的卷积层可以使用ReLU激活函数,以保持非线性。
conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
conv2 = nn.Conv2d(out_channels, out_channels_next, kernel_size=3, stride=1, padding=1)
在实际操作中,需要监控模型的训练和验证集性能,确保增加的复杂性带来了实际的性能提升。
2. 当前任务中为什么全连接层是3277?每一个数字代表什么含义?
在卷积神经网络中,全连接层前的尺寸通常反映了特征图的大小和深度。3277中的每个数字有其特定含义:
-
32:代表特征图的深度(也就是上一层输出的通道数)。这通常是指在卷积层或池化层后,模型学习到的特征的数量。每个通道可以看作是模型学习到的某种特定特征的响应。
-
7 和 7:表示特征图的宽度和高度。这是经过一系列卷积和池化操作后,原始输入图像被降采样(或下采样)后的尺寸。
以典型的CNN架构为例,假设输入图像为224x224像素,使用一个7x7的卷积核,经过两次最大池化(每次池化核大小为2x2,步长为2),特征图的尺寸会从224x224降为56x56,再降为28x28,最后到14x14。如果在14x14的特征图上再使用卷积层,特征图的深度会增加,但宽度和高度保持不变,直到最后被展平(flatten)成1D向量送入全连接层。
因此,如果最终特征图的深度为32,而宽度和高度均为7,展平后的向量长度即为3277,这是在进入全连接层前,模型对图像特征的最终表征。全连接层将使用这些特征进行最终的分类决策。
相关文章:
卷积神经网络(Convolutional Neural Networks, CNN)
卷积神经网络(Convolutional Neural Networks, CNN)是深度学习领域中用于处理具有网格结构的输入(如图像和视频)的神经网络模型。下面以最简单、直观的方式概述CNN的主要流程及其基本概念: 1. 输入层 概念:…...
SpringBoot系列 启动流程
文章目录 SpringApplicationSpringApplication#run 启动流程BootstrapContextSpringApplicationRunListenersprepareEnvironmentconfigureEnvironmentconfigurePropertySourcesconfigureProfiles 上下文初始化prepareContextrefreshContextprepareRefreshobtainFreshBeanFactor…...
vgg19提取特征
一般来说,大家使用VGG16,用的是第四列的网络架构,而使用VGG19,使用的就是第六列的网络架构。 使用vgg进行提取特征,在这个项目中,使用的就是每一块卷积层的第一层。 import torch.nn as nn from torchvis…...
Qt 中的 QChartView
深入理解 Qt 的 QChartView:图表展示与交互 QChartView 是 Qt Charts 模块中的一个核心类,它用于在 Qt 应用程序中显示图表,并支持多种用户交互方式。它继承自 QGraphicsView,通过封装 QChart,为用户提供了强大的图表…...
cheese安卓版纯本地离线文字识别插件
目的 cheese自动化平台是一款可以模拟鼠标和键盘操作的自动化工具。它可以帮助用户自动完成一些重复的、繁琐的任务,节省大量人工操作的时间。可以采用Vscode、IDEA编写,支持Java、Python、nodejs、GO、Rust、Lua。cheese也包含图色功能,识别…...
【C++】多肽
目录 一 多肽定义 1. 多肽的构成条件 1 例一 2 例二 2. 虚函数 3. 虚函数重写的两个意外 1 协变 2 析构函数的重写 二 关键字override 和 final 1. final 2.override 三 三重对比 1. 练习 四 多肽的原理 1. 多肽调用和普通调用 2.虚函数表 3. 分析 4. 原理 …...
Linux下Socket编程
1. Socket简介 Socket是什么? Socket是一种进程间通信的机制,通过它应用程序可以通过网络进行数据传输。Socket提供了一种跨平台的接口,使得同样的代码可以在不同的操作系统上运行。Socket类型 流式套接字(SOCK_STREAM࿰…...
Scrapy 爬虫的大模型支持
使用 Scrapy 时,你可以轻松使用大型语言模型 (LLM) 来自动化或增强你的 Web 解析。 有多种使用 LLM 来帮助进行 Web 抓取的方法。在本指南中,我们将在每个页面上调用一个 LLM,从中抽取我们定义的一组属性,而无需编写任何选择器或…...
数据仓库简介(一)
数据仓库概述 1. 什么是数据仓库? 数据仓库(Data Warehouse,简称 DW)是由 Bill Inmon 于 1990 年提出的一种用于数据分析和挖掘的系统。它的主要目标是通过分析和挖掘数据,为不同层级的决策提供支持,构成…...
Kafka和RabbitMQ区别
RabbitMQ的消息延迟是微秒级,Kafka是毫秒级(1毫秒1000微秒) 延迟消息是指生产者发送消息发送消息后,不能立刻被消费者消费,需要等待指定的时间后才可以被消费。 Kafka的单机呑吐量是十万级,RabbitMQ是万级…...
go-zero学习
go-zero官网: https://go-zero.dev/docs/tasks 好文: https://blog.csdn.net/m0_63629756/article/details/136599547 视频: https://www.bilibili.com/video/BV18JxUeyECg 微服务基础 根目录下,一个文件夹就是一个微服务。如果微…...
python如何查询函数
1、通用的帮助函数help() 使用help()函数来查看函数的帮助信息。 如: import requests help(requests) 会有类似如下输出: 2、查询函数信息 ★查看模块下的所有函数: dir(module_name) #module_name是要查询的函数名 如: i…...
计算机视觉与深度学习 | 从激光雷达数据中提取地面点和非地面点(附matlab代码)
===================================================== github:https://github.com/MichaelBeechan CSDN:https://blog.csdn.net/u011344545 ===================================================== 激光雷达数据 使用velodyneFileReader函数从P...
vulnhub-wakanda 1靶机
vulnhub:wakanda: 1 ~ VulnHub 导入靶机,放在kali同网段,扫描 靶机在192.168.81.5,扫描端口 四个端口,详细扫描一下 似乎没什么值得注意的,先看网站 就这一个页面,点按钮也没反应,扫…...
Bilibili视频如何保存到本地
Bilibili(哔哩哔哩)作为中国领先的视频分享平台之一,汇聚了大量的优质内容,从搞笑动画、综艺节目到专业教程,应有尽有。许多用户时常会遇到这样的需求:希望将视频保存到本地,方便离线观看或者保存珍藏。由于版权保护等…...
C++之多线程
前言 多线程和多进程是并发编程的两个核心概念,它们在现代计算中都非常重要,尤其是在需要处理大量数据、提高程序性能和响应能力的场景中。 多线程的重要性: 资源利用率:多线程可以在单个进程中同时执行多个任务,这可以更有效地利用CPU资源,特别是在多核处理器上。 性…...
《C++音频降噪秘籍:让声音纯净如初》
在音频处理领域,降噪是一项至关重要的任务。无论是录制音乐、语音通话还是音频后期制作,都需要有效地去除背景噪声,以获得清晰、纯净的音频效果。在 C中实现高效的音频降噪处理,可以为音频应用带来更高的质量和更好的用户体验。本…...
C(十)for循环 --- 黑神话情景
前言: "踏过三界宝刹,阅过四洲繁华。笑过五蕴痴缠,舍过六根牵挂。怕什么欲念不休,怕什么浪迹天涯。步履不停,便是得救之法。" 国际惯例,开篇先喝碗鸡汤。 今天,杰哥写的 for 循环相…...
记录一次docker报错无法访问文件夹,权限错误问题
记录一次docker报错无法访问文件夹,权限错误问题 1. 背景 使用docker安装photoview,为其分配了一个cache目录,用户其缓存数据。在运行过程中,扫描文件后显示如下错误 could not make album image cache directory: mkdir /app/c…...
react crash course 2024(8) useEffect
引入 import { useEffect } from react; useEffect – React 中文文档useEffect 是一个 React Hook,它允许你 将组件与外部系统同步。 有些组件需要与网络、某些浏览器 API 或第三方库保持连接,当它们显示在页面上时。这些系统不受 React 控制࿰…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
【Linux】C语言执行shell指令
在C语言中执行Shell指令 在C语言中,有几种方法可以执行Shell指令: 1. 使用system()函数 这是最简单的方法,包含在stdlib.h头文件中: #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...
HTML前端开发:JavaScript 常用事件详解
作为前端开发的核心,JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例: 1. onclick - 点击事件 当元素被单击时触发(左键点击) button.onclick function() {alert("按钮被点击了!&…...
select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...
并发编程 - go版
1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程,系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...
LRU 缓存机制详解与实现(Java版) + 力扣解决
📌 LRU 缓存机制详解与实现(Java版) 一、📖 问题背景 在日常开发中,我们经常会使用 缓存(Cache) 来提升性能。但由于内存有限,缓存不可能无限增长,于是需要策略决定&am…...
嵌入式常见 CPU 架构
架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集,单周期执行;低功耗、CIP 独立外设;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel(原始…...
