大数据技术:Hadoop、Spark与Flink的框架演进
大数据技术,特别是Hadoop、Spark与Flink的框架演进,是过去二十年中信息技术领域最引人注目的发展之一。这些技术不仅改变了数据处理的方式,而且还推动了对数据驱动决策和智能化的需求。在大数据处理领域,选择合适的大数据平台是确保数据处理效率和性能的关键。本文将深入比较Hadoop、Spark与Flink框架的优缺点,并为读者提供在不同场景下的选择建议。
Hadoop
Hadoop最初由Doug Cutting在2004年受MapReduce编程模型启发而开发,其名字来源于他儿子的玩具大象。Hadoop的演进主要围绕其三大核心组件:HDFS(Hadoop Distributed File System)、MapReduce和YARN(Yet Another Resource Negotiator)进行。
●Hadoop MapReduce:Hadoop版本的MapReduce编程模型,可以处理海量数据,主要面向批处理。●HDFS:HDFS全称为Hadoop Distributed File System,是Hadoop提供的分布式文件系统,有很好的扩展性和容错性。●YARN:YARN是Yet Another Resource Negotiator的缩写,是Hadoop生态系统中的资源调度器,可以管理一个Hadoop集群,并为各种类型的大数据任务分配计算资源。
这三大组件中,数据存储在HDFS上,由MapReduce负责计算,YARN负责集群的资源管理。除了三大核心组件,Hadoop生态圈还有很多其他著名的组件:●Hive:借助Hive,用户可以编写SQL语句来查询HDFS上的结构化数据,SQL会被转化成MapReduce执行。●HBase:HDFS上的数据量非常庞大,但访问和查询速度比较慢,HBase可以提供给用户毫秒级的实时查询服务,是一个基于HDFS的分布式数据库。●Storm:Strom是一款实时计算框架,主要负责流处理。●Zookeeper:Hadoop生态圈很多组件使用动物来命名,形成了一个大型动物园,Zookeeper是这个动物园的管理者,主要负责分布式环境的协调。
- Hadoop的优点稳定性高:Hadoop经过长时间验证,稳定性较高。适用于批处理: 在大规模批处理场景下表现出色。成熟的生态系统: 生态系统庞大,有丰富的工具和支持。2. Hadoop的缺点实时性差: 不适合处理对实时性要求较高的场景。编程模型相对复杂: 使用MapReduce需要编写大量代码。3.Hadoop的适用场景适用于需要稳定批处理的大规模数据处理场景,如离线数据分析。
Spark
Spark于2009年诞生于加州大学伯克利分校,2013年被捐献给Apache基金会。Spark是一款大数据计算框架,其初衷是改良Hadoop MapReduce的编程模型和执行速度。与Hadoop相比,Spark的改进主要有两点:● 易用性:比起MPI,MapReduce模型更友好,但仍然不够方便,因为并不是所有计算任务都可以简单拆分成map和reduce,有可能为了解决一个问题,要设计多个MapReduce任务,任务之间相互依赖,整个程序非常复杂,导致代码的可读性差。Spark提供更加方便易用的接口,提供Java、Scala、Python和R几种语言的API,支持SQL、机器学习和图计算,覆盖了绝大多数大数据计算的场景。● 速度快:Hadoop的map和reduce之间的中间结果都需要落地到磁盘上,而Spark尽量将大部分计算放在内存中,加上Spark的有向无环图优化,在官方的基准测试中,Spark比Hadoop快一百倍以上。
Spark的核心在于计算,主要目的在于优化Hadoop MapReduce计算部分,在计算层面提供更细致的服务,比如提供了常用几种数据科学语言的API,提供了SQL、机器学习和图计算支持,这些服务都是最终面向计算的。Spark并不能完全取代Hadoop,实际上,Spark融入到了Hadoop生态圈,成为其中的重要一元。一个Spark任务很可能依赖HDFS上的数据,向YARN来申请计算资源,将HBase作为输出结果的目的地。当然,Spark也可以不用依赖这些Hadoop组件,独立地完成计算。
Spark主要面向批处理需求,因其优异的性能和易用的接口,Spark已经是批处理界绝对的王者。Spark Streaming提供了流处理的功能,它的流处理主要基于mini-batch的思想,即将输入数据流拆分成多个批次,每个批次使用批处理的方式进行计算。因此,Spark是一款批量和流式于一体的计算框架。
1.Spark的优点高性能:Spark的内存计算模型使其在迭代算法和交互式查询中表现出色。多模块支持: 支持批处理、流处理、机器学习等多个模块。易用性: 相对于Hadoop的MapReduce,Spark的API更为友好。2.Spark的缺点对内存要求较高: 需要足够的内存来发挥其性能优势。相对年轻: 相对于Hadoop,Spark相对年轻,生态系统相对较小。3.Spark的适用场景适用于需要高性能批处理、交互式查询以及流处理的场景,如数据仓库和实时数据处理。
Flink
Flink是由德国几所大学发起的的学术项目,后来不断发展壮大,并于2014年末成为Apache顶级项目。Flink主要面向流处理,如果说Spark是批处理界的王者,那么Flink就是流处理领域的冉冉升起的新星。在Flink之前,不乏流式处理引擎,比较著名的有Storm、Spark Streaming,但某些特性远不如Flink。第一代被广泛采用的流处理框架是Strom。在多项基准测试中,Storm的数据吞吐量和延迟都远逊于Flink。Storm只支持"at least once"和"at most once",即数据流里的事件投递只能保证至少一次或至多一次,不能保证只有一次。对于很多对数据准确性要求较高的应用,Storm有一定劣势。第二代非常流行的流处理框架是Spark Streaming。Spark Streaming使用mini-batch的思想,每次处理一小批数据,一小批数据包含多个事件,以接近实时处理的效果。因为它每次计算一小批数据,因此总有一些延迟。但Spark Streaming的优势是拥有Spark这个靠山,用户从Spark迁移到Spark Streaming的成本较低,因此能给用户提供一个批量和流式于一体的计算框架。
Flink是与上述两代框架都不太一样的新一代计算框架,它是一个支持在有界和无界数据流上做有状态计算的大数据引擎。它以事件为单位,并且支持SQL、State、WaterMark等特性。它支持"exactly once",即事件投递保证只有一次,不多也不少,这样数据的准确性能得到提升。比起Storm,它的吞吐量更高,延迟更低,准确性能得到保障;比起Spark Streaming,它以事件为单位,达到真正意义上的实时计算,且所需计算资源相对更少。数据都是以流的形式产生的,数据可以分为有界(bounded)和无界(unbounded),批量处理其实就是一个有界的数据流,是流处理的一个特例。Flink基于这种思想,逐步发展成一个可支持流式和批量处理的大数据框架。经过几年的发展,Flink的API已经非常完善,可以支持Java、Scala和Python,并且支持SQL。Flink的Scala版API与Spark非常相似,有Spark经验的程序员可以用一个小时的时间熟悉Flink API。与Spark类似,Flink目前主要面向计算,并且可以与Hadoop生态高度集成。
1.Flink的优点流处理优势: 在流处理场景中表现出色,支持低延迟的数据处理。支持事件时间处理: 对于事件时间处理有较好的支持,适合实时分析。状态管理:Flink内置了强大的状态管理机制,便于处理有状态的计算。2.Flink的缺点相对较小的生态系统: 相对于Spark,Flink的生态系统相对较小。学习曲线较陡峭: 对于初学者,学习Flink可能相对较为复杂。3.Flink的适用场景适用于对实时性要求较高,需要流处理能力的场景,如实时数据分析和监控。
如何选择?
1.根据数据处理类型批处理: Hadoop适用于稳定的大规模批处理。交互式查询、流处理: Spark提供了全面的解决方案。实时流处理: Flink在实时性要求较高的场景中表现优越。2.根据学习曲线初学者: 对于初学者,Spark的API相对友好。经验丰富者:需要根据项目需求和个人经验权衡。3.根据性能需求对实时性要求不高: Hadoop可能是一个稳定的选择。高性能批处理: Spark在这方面有着卓越表现。实时流处理: Flink在这方面具有优势。
在选择大数据平台时,需根据项目需求、性能要求以及开发团队经验进行权衡。Hadoop、Spark和Flink各有优劣,选择适合自己项目的平台是提高大数据处理效率和性能的关键。希望本文能为读者提供对这三个主流大数据处理框架的深入了解,帮助做出明智的选择。
FineDataLink是一款低代码/高时效的数据集成平台,它不仅提供了数据清理和数据分析的功能,还能够将清理后的数据快速应用到其他应用程序中。FineDataLink的功能非常强大,可以轻松地连接多种数据源,包括数据库、文件、云存储等,而且支持大数据量。此外,FineDataLink还支持高级数据处理功能,例如数据转换、数据过滤、数据重构、数据集合等。使用FineDataLink可以显著提高团队协作效率,减少数据连接和输出的繁琐步骤,使整个数据处理流程更加高效和便捷。
相关文章:

大数据技术:Hadoop、Spark与Flink的框架演进
大数据技术,特别是Hadoop、Spark与Flink的框架演进,是过去二十年中信息技术领域最引人注目的发展之一。这些技术不仅改变了数据处理的方式,而且还推动了对数据驱动决策和智能化的需求。在大数据处理领域,选择合适的大数据平台是确…...
Spring Boot框架下的新闻推荐技术
1系统概述 1.1 研究背景 如今互联网高速发展,网络遍布全球,通过互联网发布的消息能快而方便的传播到世界每个角落,并且互联网上能传播的信息也很广,比如文字、图片、声音、视频等。从而,这种种好处使得互联网成了信息传…...

相亲交友系统的社会影响:家庭结构的变化
随着互联网技术的发展,相亲交友系统已成为许多单身人士寻找伴侣的重要途径。这些平台不仅改变了人们的社交方式,还对家庭结构产生了深远的影响。本文将探讨相亲交友系统如何促使家庭结构发生变化,开发h17711347205并通过简单的Python代码示例…...
C++ 内存池(Memory Pool)详解
1. 基本概念 内存池是一种内存管理技术,旨在提高内存分配的效率。它通过预先分配一块大的内存区域(池),然后从中分配小块内存来满足应用程序的需求。这样可以减少频繁的内存分配和释放带来的性能开销。 2. 设计思路 内存池的设…...
css三角形:css画箭头向下的三角形
.arrow { position: absolute; bottom: 0; left: 50%; transform: translateX(-50%); width: 0; height: 0; border-style: solid; border-width: 8px 5px 0 5px; /* 上、左、下、右 */ bord…...
CSS属性 - animation
一、基本概念 animation是 CSS 中的一个属性,用于将通过keyframes规则定义的动画应用到元素上。它是一种简写属性,能够在一个声明中设置多个动画相关的子属性。 二、语法结构 基本语法为: animation: name duration timing - function de…...
昇思MindSpore进阶教程--在ResNet-50网络上应用二阶优化实践(下)
大家好,我是刘明,明志科技创始人,华为昇思MindSpore布道师。 技术上主攻前端开发、鸿蒙开发和AI算法研究。 努力为大家带来持续的技术分享,如果你也喜欢我的文章,就点个关注吧 文章上半部分请查看 在ResNet-50网络上应…...

基于大数据的Python+Django电影票房数据可视化分析系统设计与实现
目录 1 引言 2 系统需求分析 3 技术选型 4 系统架构设计 5 关键技术实现 6 系统实现 7 总结与展望 1 引言 随着数字媒体技术的发展,电影产业已经成为全球经济文化不可或缺的一部分。电影不仅是艺术表达的形式,更是大众娱乐的重要来源。在这个背景…...
实景三维技术对光伏产业的发展具有哪些优势?
实景三维技术对光伏产业的发展具有显著的优势,主要体现在提高选址准确性、优化用地规划、促进数据融合应用以及赋能文旅服务领域。 提高选址准确性:通过构建高精度的三维地形模型,结合卫星遥感、无人机测绘等技术手段,实景三维…...

四非人的保研之路,2024(2025届)四非计算机的保研经验分享(西南交通、苏大nlp、西电、北邮、山软、山计、电科、厦大等)
文章目录 一、个人背景二、夏令营北京邮电大学CS西南交通大学CS深圳大学CS苏州大学NLP南开大学CS 三、预推免北京邮电大学CS华东师范大学 CS和大数据电子科技大学 CS东北大学 CS厦门大学 信息学院山东大学 CS和SE西安电子科技大学 CS 四、个人经验五、上岸 一、个人背景 学校专…...

UE5.4.3 录屏回放系统ReplaySystem蓝图版
这是ReplaySystem的蓝图使用方法版,以第三人称模版为例,需要几个必须步骤 项目config内DefaultEngine.ini的最后添加: [/Script/Engine.GameEngine] NetDriverDefinitions(DefName"DemoNetDriver",DriverClassName"/Script/…...

ECCV 2024 | 融合跨模态先验与扩散模型,快手处理大模型让视频画面更清晰!
计算机视觉领域顶级会议 European Conference on Computer Vision(ECCV 2024)将于9月29日至10月4日在意大利米兰召开,快手音视频技术部联合清华大学所发表的题为《XPSR: Cross-modal Priors for Diffusion-based Image Super-Resolution》——…...

9--苍穹外卖-SpringBoot项目中Redis的介绍及其使用实例 详解
目录 Redis入门 Redis简介 Redis服务启动与停止 服务启动命令 Redis数据类型 5种常用数据类型介绍 各种数据类型的特点 Redis常用命令 字符串操作命令 哈希操作命令 列表操作命令 集合操作命令 有序集合操作命令 通用命令 在java中操作Redis Redis的Java客户端 …...

【EXCEL数据处理】000014 案例 EXCEL分类汇总、定位和创建组。附多个操作案例。
前言:哈喽,大家好,今天给大家分享一篇文章!创作不易,如果能帮助到大家或者给大家一些灵感和启发,欢迎收藏关注哦 💕 目录 【EXCEL数据处理】000014 案例 EXCEL分类汇总、定位和创建组。附多个操…...
Windows环境Apache httpd 2.4 web服务器加载PHP8:Hello,world!
Windows环境Apache httpd 2.4 web服务器加载PHP8:Hello,world! (1)首先需要安装apache httpd 2.4 web服务器: Windows安装启动apache httpd 2.4 web服务器-CSDN博客文章浏览阅读222次,点赞5次&…...

Spring框架使用Api接口实现AOP的切面编程、两种方式的程序示例以及Java各数据类型及基本数据类型的默认值/最大值/最小值列表
一、Spring框架使用Api接口-继承类实现AOP的切面编程示例 要使用Spring框架AOP,除了要导入spring框架包外,还需要导入一个织入的包org.aspectj,具体maven依赖如下: <dependency><groupId>org.springframework</gr…...
【达梦数据库】尽可能 disql 的使用效果与异构数据库一致
文章目录 前言disql 效果优化参数设置参数说明 mysql参数设置参数说明 db2参数设置参数说明 待补充 前言 让达梦的disql 使用起来更跟手,与其他优质数据库的命令行工具通过配置参数的方式尽可能一致,提高使用体验,长期整理中~~~ 测试版本&…...
【研1深度学习】《神经网络和深度学习》阅读笔记(记录中......
9.27 语义鸿沟: 是指输入数据的底层特征和高层语义信息之间的不一致性和查一下。如果可以有一个好的表示在某种程度上能够反映出数据的高层语义特征,那么我们就能相对容易的构建后续的机器学习模型。嵌入(Embedding):…...

十一不停歇-学习ROS2第一天 (10.2 10:45)
话题通信 1.1 发布第一个节点: import rclpy #导入此类模块 rcl类型 from rclpy.node import Node #从这个子模块中导入这类函数 def main(): #定义这个函数 rclpy.init() #使用初始化函数 node Node(hello_python) 将类函数里面的内容调给…...
Java高效编程(14):考虑实现 `Comparable
解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 与其他方法不同,compareTo 并非 Object 类中声明的,而是 Comparable 接口的唯一方法。compareTo 方法与 equals 类似,但它不仅支持相等性比较,还允许顺序…...

UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具
文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错
出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...