蘑菇分类检测数据集 21类蘑菇 8800张 带标注 voc yolo
蘑菇分类检测数据集 21类蘑菇 8800张 带标注 v
蘑菇分类检测数据集 21类蘑菇 8800张 带标注 voc yolo


蘑菇分类检测数据集介绍
数据集名称
蘑菇分类检测数据集 (Mushroom Classification and Detection Dataset)
数据集概述
该数据集专为训练和评估基于YOLO系列目标检测模型(包括YOLOv5、YOLOv6、YOLOv7等)而设计,旨在帮助研究人员和开发者创建能够高效识别图像中的多种蘑菇类别的系统。通过使用这个数据集,可以开发出适用于生态研究、食品安全监测、野外探险等多种应用场景的技术解决方案。
数据集规格
- 总图像数量:8,800张
- 训练集:具体划分比例未提供,通常建议按照70%(训练)、20%(验证)、10%(测试)的比例来分配。
- 标注格式:
- VOC格式:每个图像对应一个XML文件,包含边界框坐标及类别信息。
- YOLO格式:每个图像对应一个TXT文件,包含边界框坐标及类别ID。
- 分辨率:图像分辨率可能有所不同,但为了保证一致性,推荐将所有图像调整至统一尺寸,如640x640或1280x1280像素。
- 类别:涵盖21种常见的蘑菇类型,包括但不限于Clitocybe maxima、Lentinus edodes、Agaricus bisporus等。
数据集结构
mushroom_classification_dataset/
├── images/
│ ├── train/
│ ├── val/
│ └── test/
├── labels/
│ ├── train/
│ ├── val/
│ └── test/
└── data.yaml
images/目录下存放的是原始图像文件。labels/目录存放与图像对应的标注文件,每个图像文件都有一个同名的.txt文件存储其YOLO格式的标注信息,以及一个同名的.xml文件存储其VOC格式的标注信息。data.yaml文件包含了关于数据集的基本信息,如路径指向、类别数目及其名称等关键参数。
数据集配置文件 (data.yaml)
# 训练集图像路径
train: path_to_your_train_images
# 验证集图像路径
val: path_to_your_val_images
# 测试集图像路径(如果有的话)
test: path_to_your_test_images# 类别数量
nc: 21
# 类别名称
names: ['Clitocybe maxima','Lentinus edodes','Agaricus bisporus','Pleurotus eryngii','Copr inus comatus','Cantharellus cibarius','Boletus','Dictyophora indusiata','Pleurotus citrinopileatus','Hypsizygus marmoreus','Pleurotus cystidiosus','Flammulina velutiper','Agrocybe aegerita','Auricularia auricula','Armillaria mellea','Agaricus blazei Murill','Pleurotus ostreatus','Morchella esculenta','Hericium erinaceus','Cordyceps militaris','Collybia albuminosa'
]
标注统计
- Clitocybe maxima:606张图像,共1,049个实例
- Lentinus edodes:479张图像,共2,690个实例
- Agaricus bisporus:161张图像,共521个实例
- Pleurotus eryngii:423张图像,共704个实例
- Coprinus comatus:519张图像,共1,599个实例
- Cantharellus cibarius:648张图像,共1,317个实例
- Boletus:639张图像,共1,353个实例
- Dictyophora indusiata:535张图像,共1,275个实例
- Pleurotus citrinopileatus:441张图像,共531个实例
- Hypsizygus marmoreus:393张图像,共583个实例
- Pleurotus cystidiosus:429张图像,共711个实例
- Flammulina velutiper:423张图像,共550个实例
- Agrocybe aegerita:179张图像,共197个实例
- Auricularia auricula:242张图像,共408个实例
- Armillaria mellea:200张图像,共290个实例
- Agaricus blazei Murill:137张图像,共307个实例
- Pleurotus ostreatus:433张图像,共549个实例
- Morchella esculenta:433张图像,共1,107个实例
- Hericium erinaceus:454张图像,共1,299个实例
- Cordyceps militaris:600张图像,共1,137个实例
- Collybia albuminosa:493张图像,共2,074个实例
- 总计 (total):8,858张图像,共20,251个实例
标注示例
YOLO格式
对于一张图片中包含一个“Lentinus edodes”情况,相应的.txt文件内容可能是:
1 0.5678 0.3456 0.1234 0.2345
这里1代表“Lentinus edodes”这一类别的ID,后续四个数字依次表示物体在图像中的相对位置(中心点x, 中心点y, 宽度w, 高度h),所有值均归一化到[0, 1]范围内。
VOC格式
对于同一张图片,相应的.xml文件内容可能是:
<annotation><folder>images</folder><filename>000001.jpg</filename><size><width>640</width><height>640</height><depth>3</depth></size><object><name>Lentinus edodes</name><bndbox><xmin>180</xmin><ymin>200</ymin><xmax>300</xmax><ymax>400</ymax></bndbox></object>
</annotation>
这里<name>标签指定了类别名称(Lentinus edodes),<bndbox>标签定义了边界框的坐标。
使用说明
-
准备环境:
- 确保安装了必要的软件库以支持所选版本的YOLO模型。例如,对于YOLOv5,可以使用以下命令安装依赖库:
pip install -r requirements.txt
- 确保安装了必要的软件库以支持所选版本的YOLO模型。例如,对于YOLOv5,可以使用以下命令安装依赖库:
-
数据预处理:
- 将图像和标注文件分别放在
images/和labels/目录下。 - 修改
data.yaml文件中的路径以匹配你的数据集位置。 - 如果需要,可以使用脚本将VOC格式的标注文件转换为YOLO格式,或者反之。
- 将图像和标注文件分别放在
-
修改配置文件:
- 更新
data.yaml以反映正确的数据路径。 - 如果使用YOLOv5或其他特定版本的YOLO,还需要更新相应的模型配置文件(如
models/yolov5s.yaml)。
- 更新
-
开始训练:
- 使用提供的训练脚本启动模型训练过程。例如,对于YOLOv5,可以使用以下命令进行训练:
python train.py --img 640 --batch 16 --epochs 100 --data data.yaml --weights yolov5s.pt
- 使用提供的训练脚本启动模型训练过程。例如,对于YOLOv5,可以使用以下命令进行训练:
-
性能评估:
- 训练完成后,使用验证集或测试集对模型进行评估,检查mAP等指标是否达到预期水平。例如,对于YOLOv5,可以使用以下命令进行评估:
python val.py --data data.yaml --weights runs/train/exp/weights/best.pt --img 640
- 训练完成后,使用验证集或测试集对模型进行评估,检查mAP等指标是否达到预期水平。例如,对于YOLOv5,可以使用以下命令进行评估:
-
部署应用:
- 将训练好的模型应用于实际场景中,实现蘑菇自动检测功能。例如,可以使用以下命令进行推理:
python detect.py --source path_to_your_test_images --weights runs/train/exp/weights/best.pt --conf 0.4
- 将训练好的模型应用于实际场景中,实现蘑菇自动检测功能。例如,可以使用以下命令进行推理:
注意事项
- 数据增强:可以通过调整数据增强策略来进一步提高模型性能,例如随机裁剪、旋转、亮度对比度调整等。
- 超参数调整:根据实际情况调整学习率、批大小等超参数,以获得最佳训练效果。
- 硬件要求:建议使用GPU进行训练,以加快训练速度。如果没有足够的计算资源,可以考虑使用云服务提供商的GPU实例。
- 平衡数据:注意数据集中各类别之间的不平衡问题,可以通过过采样、欠采样或使用类别权重等方式来解决。
- 复杂背景:蘑菇可能出现在各种复杂的自然环境中,因此在训练时需要注意模型对这些特性的适应性。
- 细粒度分类:由于蘑菇种类较多且外观相似,模型需要具备较强的区分能力,可以在训练过程中引入更精细的数据增强技术或采用更强的特征提取网络。
通过上述步骤,你可以成功地使用YOLO系列模型进行蘑菇分类检测,并获得高精度的检测结果。该数据集为研究者们提供了一个良好的起点,用于探索如何有效地利用计算机视觉技术解决各种实际问题,特别是在生态研究和食品安全监测领域。
oc yolo
相关文章:
蘑菇分类检测数据集 21类蘑菇 8800张 带标注 voc yolo
蘑菇分类检测数据集 21类蘑菇 8800张 带标注 v 蘑菇分类检测数据集 21类蘑菇 8800张 带标注 voc yolo 蘑菇分类检测数据集介绍 数据集名称 蘑菇分类检测数据集 (Mushroom Classification and Detection Dataset) 数据集概述 该数据集专为训练和评估基于YOLO系列目标检测模型…...
dockerhub 镜像拉取超时的解决方法
在几个月前,因为一些原因,导致 dockerhub 官网上面的镜像拉取超时,目前可以通过修改仓库地址,通过 daocloud 拉取 public-image-mirror 方式一 源仓库替换仓库cr.l5d.iol5d.m.daocloud.iodocker.elastic.coelastic.m.daocloud.io…...
私家车开车回家过节会发生什么事情
自驾旅行或者是自驾车回家过节路程太远。长途奔袭的私家车损耗很大。新能源汽车开始涉足电力系统和燃电混动的能源供应过渡方式。汽车在路途中出现零件故障。计划的出发日程天气原因。台风是否会提醒和注意。汽车的油站供应链和电力充电桩的漫长充电过程。高速公路的收费站和不…...
正则表达式的使用示例--Everything文件检索批量重命名工具
一、引言 Everything是一款非常实用的文件搜索工具,它可以帮助您快速定位并查找计算机中的文件和文件夹。Everything搜索文件资料之神速,有使用过的朋友们都深有体会,相对于Windows自带的搜索功能,使用Everything,可以…...
centos环境安装JDK详细教程
centos环境安装JDK详细教程 一、前期准备二、JDK安装2.1 rpm方式安装JDK2.2 zip方式安装JDK2.3 yum方式安装JDK 本文主要说明CentOS下JDK的安装过程。JDK的安装有三种方式,用户可根据实际情况选择: 一、前期准备 查看服务器操作系统型号,执…...
Spring Cloud全解析:服务调用之OpenFeign集成OkHttp
文章目录 OpenFeign集成OkHttp添加依赖配置连接池yml配置 OpenFeign集成OkHttp OpenFeign本质是HTTP来进行服务调用的,也就是需要集成一个Http客户端。 使用的是Client接口来进行请求的 public interface Client {// request是封装的请求方式、参数、返回值类型/…...
前端算法合集-1(含面试题)
(这是我面试一家中厂公司的二面算法题) 数组去重并按出现次数排序 题目描述: 给定一个包含重复元素的数组,请你编写一个函数对数组进行去重,并按元素出现的次数从高到低排序。如果次数相同,则按元素值从小到大排序。 let arr [2, 11,10, 1…...
影刀---如何进行自动化操作
本文不是广告,没有人给我宣传费,只是单纯的觉得这个软件很好用 感谢大家的多多支持哦 本文 1.基本概念与操作(非标准下拉框和上传下载)非标准对话框的操作上传对话框、下载的对话框、提示的对话框 2.综合案例3.找不到元素怎么办&a…...
146. LRU 缓存【 力扣(LeetCode) 】
零、原题链接 146. LRU 缓存 一、题目描述 请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。 实现 LRUCache 类: LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存int get(int key) 如果关键字 key 存在于缓存中ÿ…...
【算法】链表:92.反转链表(medium)+双指针
系列专栏 《分治》 《模拟》 《Linux》 目录 1、题目链接 2、题目介绍 3、解法 (双指针) 4、代码 是 206. 反转链表 - 力扣(LeetCode)的类型题,且难度提升,可以先完成206,然后参照206的…...
Command | Ubuntu 个别实用命令记录(新建用户、查看网速等)
1. 实用命令 1.1 系统相关 1.1.1 查看系统、用户信息等 查看当前系统硬件架构 uname -m注:mac 上也能用 查看当前系统的操作系统及版本 cat /etc/os-release | grep "PRETTY_NAME"查看当前系统单个cpu的可用核心数 cat /proc/cpuinfo | grep "…...
云服务器部署k8s需要什么配置?
云服务器部署k8s需要什么配置?云服务器部署K8s需要至少2核CPU、4GB内存、50GBSSD存储的主节点用于管理集群,工作节点建议至少2核CPU、2GB内存、20GBSSD。还需安装Docker,选择兼容的Kubernetes版本,配置网络插件,以及确…...
Linux --入门学习笔记
文章目录 Linux概述基础篇Linux 的安装教程 ⇒ 太简单了,百度一搜一大堆。此处略……Linux 的目录结构常用的连接 linux 的开源软件vi 和 vim 编辑器Linux 的关机、开机、重启用户登录和注销用户管理添加用户 ⇒ ( useradd 用户名 ) ( useradd -d 制定目…...
并发编程三大特性(原子性、可见性、有序性)
并发编程的三大特性实际是JVM规范要求的JVM实现必须保证的三大特性 不同的硬件和不同的操作系统在内存管理上有一定的差异,JAVA为了解决这种差异,使用JMM(Java Memry Model)来屏蔽各个操作系统之间的差异,使得java可以…...
物理学基础精解【41】
文章目录 核物理基础 Υ \varUpsilon Υ衰变1. Υ \varUpsilon Υ衰变的一般性质2. 具体的衰变模式3. 衰变公式和机制4. 实验观测和理论研究 Υ \varUpsilon Υ衰变概述一、定义二、公式三、定理一、定义二、公式三、定理 重带电粒子概述重带电粒子的性质重带电粒子的公式 重带…...
深入理解Linux内核网络(一):内核接收数据包的过程
在应用层执行read调用后就能很方便地接收到来自网络的另一端发送过来的数据,其实在这一行代码下隐藏着非常多的内核组件细节工作。在本节中,将详细讲解数据包如何从内核到应用层,以intel igb网卡为例。 部分内容来源于 《深入理解Linux网络》…...
mysql学习教程,从入门到精通,SQL LIKE 运算符(28)
1、SQL LIKE 运算符 在SQL中,LIKE运算符主要用于在WHERE子句中搜索列中的指定模式。它通常与通配符一起使用,如%(代表零个、一个或多个字符)和_(代表单个字符),以执行模糊匹配。下面是一个使用…...
uniapp微信小程序使用ucharts遮挡自定义tabbar的最佳解决方案
如图所示: 使用的ucharts遮挡住了我自定义的tabbar(如果不是提需求的有病,我才不会去自定义tabbar) 查阅了不少文档,说是开启 ucharts 的 canvas2d 即可: 官网文档地址: uCharts官网 - 秋云…...
C初阶(八)选择结构(分支结构)--if、else、switch
前言: C语言是用来解决问题的,除了必要的数据输入与输出(见前文),还要有逻辑结构。其中基本可以归为三类:顺序结构、选择结构、循环结构。今天,杰哥提笔写的是关于选择结构(又叫“分…...
基于Springboot vue应急物资供应管理系统设计与实现
博主介绍:专注于Java(springboot ssm 等开发框架) vue .net php python(flask Django) 小程序 等诸多技术领域和毕业项目实战、企业信息化系统建设,从业十五余年开发设计教学工作☆☆☆ 精彩专栏推荐订阅☆☆☆☆☆不然下次找…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
MinIO Docker 部署:仅开放一个端口
MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...
django blank 与 null的区别
1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是,要注意以下几点: Django的表单验证与null无关:null参数控制的是数据库层面字段是否可以为NULL,而blank参数控制的是Django表单验证时字…...
适应性Java用于现代 API:REST、GraphQL 和事件驱动
在快速发展的软件开发领域,REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名,不断适应这些现代范式的需求。随着不断发展的生态系统,Java 在现代 API 方…...
【SpringBoot自动化部署】
SpringBoot自动化部署方法 使用Jenkins进行持续集成与部署 Jenkins是最常用的自动化部署工具之一,能够实现代码拉取、构建、测试和部署的全流程自动化。 配置Jenkins任务时,需要添加Git仓库地址和凭证,设置构建触发器(如GitHub…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...
LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)
在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...

