当前位置: 首页 > news >正文

蘑菇分类检测数据集 21类蘑菇 8800张 带标注 voc yolo

蘑菇分类检测数据集 21类蘑菇 8800张 带标注 v

 

蘑菇分类检测数据集 21类蘑菇 8800张 带标注 voc yolo

蘑菇分类检测数据集介绍

数据集名称

蘑菇分类检测数据集 (Mushroom Classification and Detection Dataset)

数据集概述

该数据集专为训练和评估基于YOLO系列目标检测模型(包括YOLOv5、YOLOv6、YOLOv7等)而设计,旨在帮助研究人员和开发者创建能够高效识别图像中的多种蘑菇类别的系统。通过使用这个数据集,可以开发出适用于生态研究、食品安全监测、野外探险等多种应用场景的技术解决方案。

数据集规格
  • 总图像数量:8,800张
    • 训练集:具体划分比例未提供,通常建议按照70%(训练)、20%(验证)、10%(测试)的比例来分配。
  • 标注格式
    • VOC格式:每个图像对应一个XML文件,包含边界框坐标及类别信息。
    • YOLO格式:每个图像对应一个TXT文件,包含边界框坐标及类别ID。
  • 分辨率:图像分辨率可能有所不同,但为了保证一致性,推荐将所有图像调整至统一尺寸,如640x640或1280x1280像素。
  • 类别:涵盖21种常见的蘑菇类型,包括但不限于Clitocybe maxima、Lentinus edodes、Agaricus bisporus等。
数据集结构
mushroom_classification_dataset/
├── images/
│   ├── train/
│   ├── val/
│   └── test/
├── labels/
│   ├── train/
│   ├── val/
│   └── test/
└── data.yaml
  • images/ 目录下存放的是原始图像文件。
  • labels/ 目录存放与图像对应的标注文件,每个图像文件都有一个同名的.txt文件存储其YOLO格式的标注信息,以及一个同名的.xml文件存储其VOC格式的标注信息。
  • data.yaml 文件包含了关于数据集的基本信息,如路径指向、类别数目及其名称等关键参数。
数据集配置文件 (data.yaml)
# 训练集图像路径
train: path_to_your_train_images
# 验证集图像路径
val: path_to_your_val_images
# 测试集图像路径(如果有的话)
test: path_to_your_test_images# 类别数量
nc: 21
# 类别名称
names: ['Clitocybe maxima','Lentinus edodes','Agaricus bisporus','Pleurotus eryngii','Copr inus comatus','Cantharellus cibarius','Boletus','Dictyophora indusiata','Pleurotus citrinopileatus','Hypsizygus marmoreus','Pleurotus cystidiosus','Flammulina velutiper','Agrocybe aegerita','Auricularia auricula','Armillaria mellea','Agaricus blazei Murill','Pleurotus ostreatus','Morchella esculenta','Hericium erinaceus','Cordyceps militaris','Collybia albuminosa'
]
标注统计
  • Clitocybe maxima:606张图像,共1,049个实例
  • Lentinus edodes:479张图像,共2,690个实例
  • Agaricus bisporus:161张图像,共521个实例
  • Pleurotus eryngii:423张图像,共704个实例
  • Coprinus comatus:519张图像,共1,599个实例
  • Cantharellus cibarius:648张图像,共1,317个实例
  • Boletus:639张图像,共1,353个实例
  • Dictyophora indusiata:535张图像,共1,275个实例
  • Pleurotus citrinopileatus:441张图像,共531个实例
  • Hypsizygus marmoreus:393张图像,共583个实例
  • Pleurotus cystidiosus:429张图像,共711个实例
  • Flammulina velutiper:423张图像,共550个实例
  • Agrocybe aegerita:179张图像,共197个实例
  • Auricularia auricula:242张图像,共408个实例
  • Armillaria mellea:200张图像,共290个实例
  • Agaricus blazei Murill:137张图像,共307个实例
  • Pleurotus ostreatus:433张图像,共549个实例
  • Morchella esculenta:433张图像,共1,107个实例
  • Hericium erinaceus:454张图像,共1,299个实例
  • Cordyceps militaris:600张图像,共1,137个实例
  • Collybia albuminosa:493张图像,共2,074个实例
  • 总计 (total):8,858张图像,共20,251个实例
标注示例
YOLO格式

对于一张图片中包含一个“Lentinus edodes”情况,相应的.txt文件内容可能是:

1 0.5678 0.3456 0.1234 0.2345

这里1代表“Lentinus edodes”这一类别的ID,后续四个数字依次表示物体在图像中的相对位置(中心点x, 中心点y, 宽度w, 高度h),所有值均归一化到[0, 1]范围内。

VOC格式

对于同一张图片,相应的.xml文件内容可能是:

<annotation><folder>images</folder><filename>000001.jpg</filename><size><width>640</width><height>640</height><depth>3</depth></size><object><name>Lentinus edodes</name><bndbox><xmin>180</xmin><ymin>200</ymin><xmax>300</xmax><ymax>400</ymax></bndbox></object>
</annotation>

这里<name>标签指定了类别名称(Lentinus edodes),<bndbox>标签定义了边界框的坐标。

使用说明
  1. 准备环境

    • 确保安装了必要的软件库以支持所选版本的YOLO模型。例如,对于YOLOv5,可以使用以下命令安装依赖库:
      pip install -r requirements.txt
  2. 数据预处理

    • 将图像和标注文件分别放在images/labels/目录下。
    • 修改data.yaml文件中的路径以匹配你的数据集位置。
    • 如果需要,可以使用脚本将VOC格式的标注文件转换为YOLO格式,或者反之。
  3. 修改配置文件

    • 更新data.yaml以反映正确的数据路径。
    • 如果使用YOLOv5或其他特定版本的YOLO,还需要更新相应的模型配置文件(如models/yolov5s.yaml)。
  4. 开始训练

    • 使用提供的训练脚本启动模型训练过程。例如,对于YOLOv5,可以使用以下命令进行训练:
      python train.py --img 640 --batch 16 --epochs 100 --data data.yaml --weights yolov5s.pt
  5. 性能评估

    • 训练完成后,使用验证集或测试集对模型进行评估,检查mAP等指标是否达到预期水平。例如,对于YOLOv5,可以使用以下命令进行评估:
      python val.py --data data.yaml --weights runs/train/exp/weights/best.pt --img 640
  6. 部署应用

    • 将训练好的模型应用于实际场景中,实现蘑菇自动检测功能。例如,可以使用以下命令进行推理:
      python detect.py --source path_to_your_test_images --weights runs/train/exp/weights/best.pt --conf 0.4
注意事项
  • 数据增强:可以通过调整数据增强策略来进一步提高模型性能,例如随机裁剪、旋转、亮度对比度调整等。
  • 超参数调整:根据实际情况调整学习率、批大小等超参数,以获得最佳训练效果。
  • 硬件要求:建议使用GPU进行训练,以加快训练速度。如果没有足够的计算资源,可以考虑使用云服务提供商的GPU实例。
  • 平衡数据:注意数据集中各类别之间的不平衡问题,可以通过过采样、欠采样或使用类别权重等方式来解决。
  • 复杂背景:蘑菇可能出现在各种复杂的自然环境中,因此在训练时需要注意模型对这些特性的适应性。
  • 细粒度分类:由于蘑菇种类较多且外观相似,模型需要具备较强的区分能力,可以在训练过程中引入更精细的数据增强技术或采用更强的特征提取网络。

通过上述步骤,你可以成功地使用YOLO系列模型进行蘑菇分类检测,并获得高精度的检测结果。该数据集为研究者们提供了一个良好的起点,用于探索如何有效地利用计算机视觉技术解决各种实际问题,特别是在生态研究和食品安全监测领域。

oc yolo

相关文章:

蘑菇分类检测数据集 21类蘑菇 8800张 带标注 voc yolo

蘑菇分类检测数据集 21类蘑菇 8800张 带标注 v 蘑菇分类检测数据集 21类蘑菇 8800张 带标注 voc yolo 蘑菇分类检测数据集介绍 数据集名称 蘑菇分类检测数据集 (Mushroom Classification and Detection Dataset) 数据集概述 该数据集专为训练和评估基于YOLO系列目标检测模型…...

dockerhub 镜像拉取超时的解决方法

在几个月前&#xff0c;因为一些原因&#xff0c;导致 dockerhub 官网上面的镜像拉取超时&#xff0c;目前可以通过修改仓库地址&#xff0c;通过 daocloud 拉取 public-image-mirror 方式一 源仓库替换仓库cr.l5d.iol5d.m.daocloud.iodocker.elastic.coelastic.m.daocloud.io…...

私家车开车回家过节会发生什么事情

自驾旅行或者是自驾车回家过节路程太远。长途奔袭的私家车损耗很大。新能源汽车开始涉足电力系统和燃电混动的能源供应过渡方式。汽车在路途中出现零件故障。计划的出发日程天气原因。台风是否会提醒和注意。汽车的油站供应链和电力充电桩的漫长充电过程。高速公路的收费站和不…...

正则表达式的使用示例--Everything文件检索批量重命名工具

一、引言 Everything是一款非常实用的文件搜索工具&#xff0c;它可以帮助您快速定位并查找计算机中的文件和文件夹。Everything搜索文件资料之神速&#xff0c;有使用过的朋友们都深有体会&#xff0c;相对于Windows自带的搜索功能&#xff0c;使用Everything&#xff0c;可以…...

centos环境安装JDK详细教程

centos环境安装JDK详细教程 一、前期准备二、JDK安装2.1 rpm方式安装JDK2.2 zip方式安装JDK2.3 yum方式安装JDK 本文主要说明CentOS下JDK的安装过程。JDK的安装有三种方式&#xff0c;用户可根据实际情况选择&#xff1a; 一、前期准备 查看服务器操作系统型号&#xff0c;执…...

Spring Cloud全解析:服务调用之OpenFeign集成OkHttp

文章目录 OpenFeign集成OkHttp添加依赖配置连接池yml配置 OpenFeign集成OkHttp OpenFeign本质是HTTP来进行服务调用的&#xff0c;也就是需要集成一个Http客户端。 使用的是Client接口来进行请求的 public interface Client {// request是封装的请求方式、参数、返回值类型/…...

前端算法合集-1(含面试题)

(这是我面试一家中厂公司的二面算法题) 数组去重并按出现次数排序 题目描述: 给定一个包含重复元素的数组&#xff0c;请你编写一个函数对数组进行去重&#xff0c;并按元素出现的次数从高到低排序。如果次数相同&#xff0c;则按元素值从小到大排序。 let arr [2, 11,10, 1…...

影刀---如何进行自动化操作

本文不是广告&#xff0c;没有人给我宣传费&#xff0c;只是单纯的觉得这个软件很好用 感谢大家的多多支持哦 本文 1.基本概念与操作&#xff08;非标准下拉框和上传下载&#xff09;非标准对话框的操作上传对话框、下载的对话框、提示的对话框 2.综合案例3.找不到元素怎么办&a…...

146. LRU 缓存【 力扣(LeetCode) 】

零、原题链接 146. LRU 缓存 一、题目描述 请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。 实现 LRUCache 类&#xff1a; LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存int get(int key) 如果关键字 key 存在于缓存中&#xff…...

【算法】链表:92.反转链表(medium)+双指针

系列专栏 《分治》 《模拟》 《Linux》 目录 1、题目链接 2、题目介绍 3、解法 &#xff08;双指针&#xff09; 4、代码 是 206. 反转链表 - 力扣&#xff08;LeetCode&#xff09;的类型题&#xff0c;且难度提升&#xff0c;可以先完成206&#xff0c;然后参照206的…...

Command | Ubuntu 个别实用命令记录(新建用户、查看网速等)

1. 实用命令 1.1 系统相关 1.1.1 查看系统、用户信息等 查看当前系统硬件架构 uname -m注&#xff1a;mac 上也能用 查看当前系统的操作系统及版本 cat /etc/os-release | grep "PRETTY_NAME"查看当前系统单个cpu的可用核心数 cat /proc/cpuinfo | grep "…...

云服务器部署k8s需要什么配置?

云服务器部署k8s需要什么配置&#xff1f;云服务器部署K8s需要至少2核CPU、4GB内存、50GBSSD存储的主节点用于管理集群&#xff0c;工作节点建议至少2核CPU、2GB内存、20GBSSD。还需安装Docker&#xff0c;选择兼容的Kubernetes版本&#xff0c;配置网络插件&#xff0c;以及确…...

Linux --入门学习笔记

文章目录 Linux概述基础篇Linux 的安装教程 ⇒ 太简单了&#xff0c;百度一搜一大堆。此处略……Linux 的目录结构常用的连接 linux 的开源软件vi 和 vim 编辑器Linux 的关机、开机、重启用户登录和注销用户管理添加用户 ⇒ ( useradd 用户名 ) &#xff08; useradd -d 制定目…...

并发编程三大特性(原子性、可见性、有序性)

并发编程的三大特性实际是JVM规范要求的JVM实现必须保证的三大特性 不同的硬件和不同的操作系统在内存管理上有一定的差异&#xff0c;JAVA为了解决这种差异&#xff0c;使用JMM&#xff08;Java Memry Model&#xff09;来屏蔽各个操作系统之间的差异&#xff0c;使得java可以…...

物理学基础精解【41】

文章目录 核物理基础 Υ \varUpsilon Υ衰变1. Υ \varUpsilon Υ衰变的一般性质2. 具体的衰变模式3. 衰变公式和机制4. 实验观测和理论研究 Υ \varUpsilon Υ衰变概述一、定义二、公式三、定理一、定义二、公式三、定理 重带电粒子概述重带电粒子的性质重带电粒子的公式 重带…...

深入理解Linux内核网络(一):内核接收数据包的过程

在应用层执行read调用后就能很方便地接收到来自网络的另一端发送过来的数据&#xff0c;其实在这一行代码下隐藏着非常多的内核组件细节工作。在本节中&#xff0c;将详细讲解数据包如何从内核到应用层&#xff0c;以intel igb网卡为例。 部分内容来源于 《深入理解Linux网络》…...

mysql学习教程,从入门到精通,SQL LIKE 运算符(28)

1、SQL LIKE 运算符 在SQL中&#xff0c;LIKE运算符主要用于在WHERE子句中搜索列中的指定模式。它通常与通配符一起使用&#xff0c;如%&#xff08;代表零个、一个或多个字符&#xff09;和_&#xff08;代表单个字符&#xff09;&#xff0c;以执行模糊匹配。下面是一个使用…...

uniapp微信小程序使用ucharts遮挡自定义tabbar的最佳解决方案

如图所示&#xff1a; 使用的ucharts遮挡住了我自定义的tabbar&#xff08;如果不是提需求的有病&#xff0c;我才不会去自定义tabbar&#xff09; 查阅了不少文档&#xff0c;说是开启 ucharts 的 canvas2d 即可&#xff1a; 官网文档地址&#xff1a; uCharts官网 - 秋云…...

C初阶(八)选择结构(分支结构)--if、else、switch

前言&#xff1a; C语言是用来解决问题的&#xff0c;除了必要的数据输入与输出&#xff08;见前文&#xff09;&#xff0c;还要有逻辑结构。其中基本可以归为三类&#xff1a;顺序结构、选择结构、循环结构。今天&#xff0c;杰哥提笔写的是关于选择结构&#xff08;又叫“分…...

基于Springboot vue应急物资供应管理系统设计与实现

博主介绍&#xff1a;专注于Java&#xff08;springboot ssm 等开发框架&#xff09; vue .net php python(flask Django) 小程序 等诸多技术领域和毕业项目实战、企业信息化系统建设&#xff0c;从业十五余年开发设计教学工作☆☆☆ 精彩专栏推荐订阅☆☆☆☆☆不然下次找…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站&#xff0c;会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后&#xff0c;网站没有变化的情况。 不熟悉siteground主机的新手&#xff0c;遇到这个问题&#xff0c;就很抓狂&#xff0c;明明是哪都没操作错误&#x…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

Java 二维码

Java 二维码 **技术&#xff1a;**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...