当前位置: 首页 > news >正文

本地运行LLama 3.2的三种方法

在这里插入图片描述
大型语言模型(LLMs)已经彻底改变了AI领域,小型模型也在崛起。因此,即使是在旧的PC和智能手机上运行先进的LLMs也成为了可能。为了给大家一个起点,我们将探索三种不同的方法来本地与LLama 3.2进行交互。

先决条件

在这里插入图片描述

在我们深入探讨之前,请确保你已经:

  • 安装并运行了Ollama

  • 已经拉取了LLama 3.2模型(在终端中使用 ollama pull llama3.2

现在,让我们来探索这三种方法!

Ollama的Python包提供了一种简便的方法,可以在你的Python脚本或Jupyter笔记本中与LLama 3.2进行交互。

import ollamaresponse = ollama.chat(model="llama3.2",messages=[{"role": "user","content": "Tell me an interesting fact about elephants",},],
)
print(response["message"]["content"])

这种方法非常适合简单的同步交互。但如果你想要流式接收响应呢?Ollama为你提供了AsyncClient:

import asyncio
from ollama import AsyncClientasync def chat():message = {"role": "user","content": "Tell me an interesting fact about elephants"}async for part in await AsyncClient().chat(model="llama3.2", messages=[message], stream=True):print(part["message"]["content"], end="", flush=True)# Run the async function
asyncio.run(chat())

方法二:使用Ollama API

对于那些更喜欢直接使用API或想要将LLama 3.2集成到非Python应用程序中的人,Ollama提供了一个简单的HTTP API。

curl http://localhost:11434/api/chat -d '{"model": "llama3.2","messages": [{"role": "user","content": "What are God Particles?"}],"stream": false
}'

这种方法为你提供了从任何能够发出HTTP请求的语言或工具与LLama 3.2进行交互的灵活性。

方法三:使用Langchain构建高级应用程序

对于更复杂的应用程序,特别是涉及文档分析和检索的应用程序,Langchain与Ollama和LLama 3.2可以无缝集成。

以下代码片段展示了加载文档、创建嵌入和执行相似性搜索的过程:

from langchain_community.document_loaders import DirectoryLoader, UnstructuredWordDocumentLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.embeddings import OllamaEmbeddings
from langchain_community.llms import Ollama
from langchain_community.vectorstores import Chroma# 加载文档
loader = DirectoryLoader('/path/to/documents', glob="**/*.docx", loader_cls=UnstructuredWordDocumentLoader)
documents = loader.load()# 将文档拆分为多个块
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
splits = text_splitter.split_documents(documents)# 创建嵌入和向量存储
embeddings = OllamaEmbeddings(model="nomic-embed-text")
vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings)# 初始化LLama 3.2
llm = Ollama(model="llama3.2", base_url="http://localhost:11434")# 执行相似性搜索并生成回答
query = "What was the main accomplishment of Thomas Jefferson?"
similar_docs = vectorstore.similarity_search(query)
context = "\n".join([doc.page_content for doc in similar_docs])
response = llm(f"上下文: {context}\n问题: {query}\n回答:")
print(response)

这种方法允许你构建能够使用LLama 3.2强大的语言理解能力来理解和推理大量文本数据的应用程序。

开始生成提示了!

下载成功后,你可以在终端中使用以下命令运行模型:

$ ollama run llama3.2:3b-instruct-q8_0

现在你已经可以生成一些图片提示了。假设我想为我的博客文章创建一个缩略图,于是我运行了下面的提示词:

Generate a random image prompt that I can use as a thumbnail for my article.

这是生成的结果:

Here's a random image prompt for you:"A misty, moonlit forest with an old, gnarled tree in the center, its branches twisted and tangled like a giant's fingers. In the background, a subtle glow
emanates from a faint, ethereal light that seems to be seeping from the very earth itself."Feel free to use this prompt as is or modify it to fit your article's theme and style!

在这里插入图片描述

现在我准备在leonardo.ai网站上使用这个图片提示。这个网站非常适合从文本生成图片。你可以通过创建账户轻松开始制作图片。

该网站每天为你提供150个可用积分。如果合理使用这些积分,它非常适合个人使用。

在这里插入图片描述

如果你是这个平台的新手,可以使用我的图片生成设置,以下是具体的设置:

  • 预设:Cinematic Kino

  • 预设风格:Cinematic

  • 对比度:Medium

  • 图片尺寸:16:9, Medium

  • 模型:Leonardo Lightning XL

结论

在本地运行LLama 3.2为AI驱动的应用程序打开了新的可能性。无论你是寻找简单的聊天交互、基于API的集成,还是复杂的文档分析系统,这三种方法都提供了适应各种使用场景的灵活性。

记住要负责任地、道德地使用这些强大的工具。编码愉快!

相关文章:

本地运行LLama 3.2的三种方法

大型语言模型(LLMs)已经彻底改变了AI领域,小型模型也在崛起。因此,即使是在旧的PC和智能手机上运行先进的LLMs也成为了可能。为了给大家一个起点,我们将探索三种不同的方法来本地与LLama 3.2进行交互。 先决条件 在我…...

基于单片机的温度和烟雾检测

目录 一、主要功能 二、硬件资源 三、程序编程 四、实现现象 一、主要功能 基于51单片机,采用DS18B20读取温度,滑动变阻器链接ADC0832数模转换模拟烟雾, 通过lcd1602显示屏显示, 超过阈值则对应的led灯亮起,蜂鸣器…...

利士策分享,探寻中华民族的精神纽带

利士策分享,探寻中华民族的精神纽带 在历史的长河中,中华民族以其独特的文化魅力和坚韧不拔的民族精神,屹立于世界民族之林。 这份力量,源自何处?或许,正是那份纯真的情,如同纽带一般&#xff…...

JAVA思维提升案例3

需求: 某系统的数字密码是一个四位数,如1983,为了安全,需要加密后再传输,加密规则是:对密码中的每位数,都加5 ,再对10求余,最后将所有数字顺序反转,得到一串加密后的新数…...

vscode配置golang

1.安装golang解释器 从网址https://go.dev/dl/下载对应的golang解释器 2.配置环境 Extensions中搜索安装go 2.配置settings.json {"go.autocompleteUnimportedPackages": true,"go.gocodeAutoBuild": false,"explorer.confirmPasteNative"…...

设计模式之原型模式(通俗易懂--代码辅助理解【Java版】)

文章目录 设计模式概述1、原型模式2、原型模式的使用场景3、优点4、缺点5、主要角色6、代码示例7、总结题外话关于使用序列化实现深拷贝 设计模式概述 创建型模式:工厂方法、抽象方法、建造者、原型、单例。 结构型模式有:适配器、桥接、组合、装饰器、…...

Study-Oracle-10-ORALCE19C-RAC集群维护

一路走来,所有遇到的人,帮助过我的、伤害过我的都是朋友,没有一个是敌人。 一、RAC的逻辑架构与进程 1、RAC 与单实例进程的对比 2、RAC相关进程功能 3、在主机查看RAC进程 其他的不列举了 4、RAC集群启停命令 检查集群状态 ORACLE 19C …...

【无题】夜入伊人笑愉,泪湿心夜难眠。

在这句诗中,意境描绘了一种深沉的情感体验,充满了温柔与哀愁。诗人通过“夜入伊人笑愉”开启了一段梦境之旅,其中“夜入”象征着进入梦境的状态。在这个梦幻的世界里,诗人与心爱的人欢笑嬉戏,那份快乐和亲昵如同真实的…...

docker下载mysql时出现Unable to pull mysql:latest (HTTP code 500) server error 问题

报错 Unable to pull mysql:latest (HTTP code 500) server error - Get “https://registry-1.docker.io/v2/”: EOF 解决方法 将VPN开到Global模式 解决啦...

厦门网站设计的用户体验优化策略

厦门网站设计的用户体验优化策略 在信息化快速发展的今天,网站作为企业与用户沟通的重要桥梁,用户体验(UX)的优化显得尤为重要。尤其是在交通便利、旅游资源丰富的厦门,吸引了大量企业进驻。在这样竞争激烈的环境中&am…...

Fastjson反序列化

Fastjson反序列化一共有三条利用链 TempLatesImpl:实战中不适用JdbcRowSetImpl:实际运用中较为广泛BasicDataSource(BCEL) 反序列化核心 反序列化是通过字符串或字节流,利用Java的反射机制重构一个对象。主要有两种…...

Python Linux解压安装脚本

本脚本用于安装python3.x, 需要指定python版本,如12代表3.12 安装文件下载自 python-build-standalone 我下载的文件后缀是:-x86_64-unknown-linux-gnu-pgo-full.tar.zst,根据需要自行下载 注意:install_only或tar.gz包的目录没有…...

numpy 逻辑运算方法介绍

在 NumPy 中,逻辑运算方法用于对数组中的元素进行逻辑操作,通常用于布尔数组,也可用于数值数组,非零值视为 True,零值视为 False。常见的逻辑运算方法有: 1. numpy.logical_and 逐元素进行逻辑与运算&…...

怎么查看网站是否被谷歌收录,查看网站是否被谷歌收录的简便方法

查看网站是否被谷歌收录,有多种简便方法可供选择。以下是一些常用的简便方法: 一、使用“site:”指令 打开谷歌搜索引擎: 在浏览器中打开Google.com,确保使用的是谷歌的官方搜索引擎。 输入查询指令: 在搜索框中输…...

【前端开发入门】前端开发环境配置

目录 引言一、Vscode编辑器安装1. 软件下载2. 软件安装3. 插件安装 二、Nodejs环境安装及版本控制1. 安装内容2. 使用nvm安装2.1 软件下载并安装2.2 nvm基本指令2.3 nvm下载过慢导致超时解决 三、git安装及配置1. 软件下载2. 软件安装3. 基础配置 四、总结 引言 本系列教程旨在…...

Windows驱动开发(二)

1. NT和WDM式驱动 1. NT式驱动 传统的Windows系统驱动类型。NT式驱动的启动/停止/安装/卸载只能由 服务控制管理程序组件(SCM) 来完成的。 包括最简单的hello world,以及目前常用的文件过滤框架 minifilter 都是基于NT式实现的。 NT式驱动的最大特点即完全不依赖硬…...

Hotspot是什么?

Hotspot 简单来说,JVM的一种。 一、HotSpot 的官方定义 HotSpot 是 Oracle 公司开发的一个高性能的 Java 虚拟机(JVM)。它通过一系列先进的技术和优化手段,为 Java 应用程序提供高效的运行环境,实现了跨平台的代码执行…...

k8s-集群部署1

k8s-集群部署1 一、基础环境准备二、docker环境准备三、k8s集群部署1.kubeadm创建集群2.使用kubeadm引导集群 总结 一、基础环境准备 首先,需要准备三个服务器实例,这里我使用了阿里云创建了三个实例,如果不想花钱,也可以在VM上创…...

wordpress Contact form 7发件人邮箱设置

此教程仅适用于演示站有留言的主题,演示站没有留言的主题,就别往下看了,免费浪费时间。 使用了Contact form 7插件的简站WordPress主题,在有人留言时,就会发邮件到网站的系统邮箱(一般与管理员邮箱为同一个)里。上面显…...

15分钟学 Python 第38天 :Python 爬虫入门(四)

Day38 : Python爬虫异常处理与反爬虫机制 章节1:异常处理的重要性 在爬虫开发过程中,网络请求和数据解析常常会遭遇各种异常。正确的异常处理可以提高程序的稳定性,避免崩溃,并帮助开发者快速定位问题。 章节2:常见…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

【机器视觉】单目测距——运动结构恢复

ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛&#xf…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码:‘allure’ �����ڲ����ⲿ���Ҳ���ǿ�&am…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

【Post-process】【VBA】ETABS VBA FrameObj.GetNameList and write to EXCEL

ETABS API实战:导出框架元素数据到Excel 在结构工程师的日常工作中,经常需要从ETABS模型中提取框架元素信息进行后续分析。手动复制粘贴不仅耗时,还容易出错。今天我们来用简单的VBA代码实现自动化导出。 🎯 我们要实现什么? 一键点击,就能将ETABS中所有框架元素的基…...

Python实现简单音频数据压缩与解压算法

Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中,压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言,提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...