当前位置: 首页 > news >正文

[NeurIPS 2022] STaR: Bootstrapping Reasoning With Reasoning

Contents

  • Introduction
  • Method
  • Experiments
  • References

Introduction

  • CoT 推理可以有效提升 LLM 推理能力,但 few-shot prompting 无法发挥 CoT 的全部潜力,训练能够生成中间推理步骤 (i.e., rationale) 的 LLM 又需要大量人工标注 rationale,为此作者提出 STaR (Self-Taught Reasoner),可以仅利用少量含有 rationale 的标注数据和大量不含 rationale 的标注数据,迭代式地生成大量含有 rationale 的数据集并基于此训练能够生成 rationale 的 LLM,有效提升 LLM 的复杂推理能力

Method

在这里插入图片描述

  • Rationale Generation Bootstrapping (STaR Without Rationalization). 给定预训练 LLM M M M 和 small prompt set P = { ( x i p , r i p , y i p ) } i = 1 P \mathcal{P}=\{(x_{i}^{p},r_{i}^{p},y_{i}^{p})\}_{i=1}^{P} P={(xip,rip,yip)}i=1P (e.g. P = 10 P = 10 P=10),其中 x x x 为问题, r r r 为中间推理步骤, y y y 为问题回答,可以利用 few-shot prompting 为一个更大的数据集 D = { ( x i , y i ) } i = 1 D \mathcal D=\{(x_i,y_i)\}_{i=1}^D D={(xi,yi)}i=1D 生成中间推理步骤 r ^ i \hat r_i r^i 和答案 y ^ i \hat y_i y^i,这样就得到了含有中间推理步骤的大规模数据集。此外,作者只保留其中 y ^ i = y i \hat y_i=y_i y^i=yi 的样本,因为这些样本对应的中间推理步骤质量总体来说会更高一些,由此得到 filtered dataset,在此数据集上微调 M M M 得到可以直接生成中间推理步骤的 LLM. 上述步骤为 1 个循环,STaR 会重复上述循环多次,每次都用上一轮循环中得到的最新的生成中间推理步骤的 LLM M n − 1 M_{n-1} Mn1 D \mathcal D D 生成中间推理步骤得到 filtered dataset,然后在该数据集上基于预训练 LLM M M M 重新训练得到新的生成中间推理步骤的 LLM M n M_n Mn;上述优化过程可以被近似看作 policy gradient,其中 J ( M , X , Y ) J(M,X,Y) J(M,X,Y) 为 total expected reward across the dataset
    在这里插入图片描述
  • Rationalization. 上述步骤还有一个缺点,就是如果 D \mathcal D D 中某些难样本始终无法生成正确答案,那么这些样本将永远无法加入 filtered dataset,无法被有效学习;为此,作者给生成错误答案的样本 prompt 中加入提示正确答案的 hint 来引导模型生成中间推理步骤和最终答案
    在这里插入图片描述
  • STaR.
    在这里插入图片描述

Experiments

  • Symbolic Reasoning: Results on Arithmetic.
    在这里插入图片描述在这里插入图片描述
  • Natural Language Reasoning: Commonsense Question Answering.
    在这里插入图片描述
  • Mathematical Reasoning in Language: Grade School Math.
    在这里插入图片描述

References

  • Zelikman, Eric, et al. “Star: Bootstrapping reasoning with reasoning.” Advances in Neural Information Processing Systems 35 (2022): 15476-15488.

相关文章:

[NeurIPS 2022] STaR: Bootstrapping Reasoning With Reasoning

Contents IntroductionMethodExperimentsReferences Introduction CoT 推理可以有效提升 LLM 推理能力,但 few-shot prompting 无法发挥 CoT 的全部潜力,训练能够生成中间推理步骤 (i.e., rationale) 的 LLM 又需要大量人工标注 rationale,为…...

C++中对象的构造与析构

目录 一、引言 二、构造函数详解 1.构造函数的作用 2.构造函数的调用时机 3.构造函数的分类 三、析构函数详解 1.析构函数的作用 2.析构函数的调用时机 四、实例分析 五、总结 本文将详细讲解C中对象的构造和析构过程,包括构造函数、析构函数的作用及其调用时机…...

算法笔记(九)——栈

文章目录 删除字符串中的所有相邻重复项比较含退格的字符串基本计算机II字符串解码验证栈序列 栈是一种先进后出的数据结构,其操作主要有 进栈、压栈(Push) 出栈(Pop) 常见的使用栈的算法题 中缀转后缀逆波兰表达式求…...

动态SLAM总结一

文章目录 方法分类:OctoMap:(2013)UFOMap:(2020)Removert:(2020)ERASOR:(2021)DynamicFilter:(202…...

HTB:Mongod[WriteUP]

连接至HTB服务器并启动靶机 靶机IP:10.129.99.33 分配IP:10.10.16.12 1.How many TCP ports are open on the machine? 使用nmap对靶机进行全端口TCP脚本、服务扫描: nmap -sC -sV -T4 -p- {TARGET_IP} 可以看到靶机共开放TCP端口2个&…...

DenseNet算法:口腔癌识别

本文为为🔗365天深度学习训练营内部文章 原作者:K同学啊 一 DenseNet算法结构 其基本思路与ResNet一致,但是它建立的是前面所有层和后面层的密集连接,它的另一大特色是通过特征在channel上的连接来实现特征重用。 二 设计理念 三…...

828华为云征文 | 利用FIO工具测试Flexus云服务器X实例存储性能

目录 一、Flexus云服务器X实例概要 1.1 Flexus云服务器X实例摘要 1.2 产品特点 1.3 存储方面性能 1.4 测评服务器规格 二、FIO工具 2.1 安装部署FIO 2.2 主要性能指标概要 三、进行压测 3.1 测试全盘随机读IO延迟 3.2 测试全盘随机写IO延迟 3.3 测试随机读IOPS 3.4…...

Pikachu-File Inclusion- 本地文件包含

前端每次挑选篮球明星,都会通过get请求,传了文件名,把页面展示出来,由于文件名时前端传给后台;并且查看源码,没有对参数做限制; 尝试直接从前端修改filename 参数; filename../../../../../../…...

linux基础 超级笔记

1.Linux系统的组成 Linux系统内核:提供系统最核心的功能,如软硬件和资源调度。 系统及应用程序:文件、任务管理器。 2.Linux发行版 通过修改内核代码自行集成系统程序,即封装。比如Ubuntu和centos这种。不过基础命令是完全相…...

Python——异常处理机制

Python 异常处理机制 Python异常与异常处理机制针对 Traceback 的解读try-except-else-finallyexcept语句except语句的机制在 except 语句中引用当前被处理的 Python 异常 finally语句finally语句执行后才能抛出未被处理的异常finally中执行return会导致异常丢失 raise 语句rai…...

社群团购中的用户黏性价值:以开源小程序多商户AI智能名片商城源码为例

摘要:本文探讨社群团购中的用户黏性价值,分析其与传统团购网站的区别,并阐述开源小程序多商户AI智能名片商城源码在增强社群团购用户黏性方面可能发挥的作用。 一、引言 在当今的商业环境中,社群团购逐渐成为一种重要的营销模式。…...

基于php的民宿预订管理系统

作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码 精品专栏:Java精选实战项目…...

java 从基础到入门 到架构师所需要学习的路线

java是一种广泛使用的编程语言,可以应用于多种平台和应用程序。下面是一个从基础到入门,再到架构师所要掌握的Java学习路线的详细列举: 学习Java基础知识: 理解面向对象编程的概念,如类、对象、继承、多态等。 学习Ja…...

【吊打面试官系列-MySQL面试题】什么叫视图?游标是什么?

大家好,我是锋哥。今天分享关于【什么叫视图?游标是什么?】面试题,希望对大家有帮助; 什么叫视图?游标是什么? 视图是一种虚拟的表,具有和物理表相同的功能。可以对视图进行增&#…...

项目管理-信息技术发展

1、计算机软硬件 2、计算机网络 1)定义 2)分类:PAN LAN MAN WAN 公用网 专用网 3)网络协议 语法 语义 时许 4)网络标准协议 7层 5)IEEE 802 规范 6)TCP/IP 协议 7) SDN 软件定义网…...

异常处理【C++提升】(基本思想,重要概念,异常处理的函数机制、异常机制,栈解旋......你想要的全都有)

更多精彩内容..... 🎉❤️播主の主页✨😘 Stark、-CSDN博客 本文所在专栏: C系列语法知识_Stark、的博客-CSDN博客 座右铭:梦想是一盏明灯,照亮我们前行的路,无论风雨多大,我们都要坚持不懈。 异…...

基于springboot vue 电影推荐系统

博主介绍:专注于Java(springboot ssm 等开发框架) vue .net php python(flask Django) 小程序 等诸多技术领域和毕业项目实战、企业信息化系统建设,从业十五余年开发设计教学工作☆☆☆ 精彩专栏推荐订阅☆☆☆☆☆不然下次找…...

八、特殊类型异常机制

特殊类型&异常机制 数据类型枚举类型匿名类、单例类和伴生对象匿名类单例类伴生对象 委托模式密封类型异常机制异常的使用异常的处理 数据类型 对于那些只需要保存数据的类型,我们常常需要为其重写toString、equals等函数,针对于这种情况下&#xf…...

虾皮Shopee Android面试题及参考答案

HTTP 状态码有哪些? HTTP 状态码是用以表示网页服务器超文本传输协议响应状态的 3 位数字代码。主要分为五大类: 1xx 信息性状态码:表示服务器正在处理请求,这些状态码是临时的响应,主要用于告诉客户端请求已经被接收,正在处理中。例如,100 Continue 表示客户端应当继续…...

Docker Compose 部署大模型GPU集群:高效分配与管理算力资源

Docker Compose 部署大模型GPU集群:高效分配与管理算力资源 文章目录 Docker Compose 部署大模型GPU集群:高效分配与管理算力资源一 Dockerfile 编写二 Dockerfile 示例三 分配GPU资源1)GPU分配:指定count2)GPU分配&am…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

docker 部署发现spring.profiles.active 问题

报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

【Linux】Linux 系统默认的目录及作用说明

博主介绍:✌全网粉丝23W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

STM32---外部32.768K晶振(LSE)无法起振问题

晶振是否起振主要就检查两个1、晶振与MCU是否兼容;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容(CL)与匹配电容(CL1、CL2)的关系 2. 如何选择 CL1 和 CL…...

libfmt: 现代C++的格式化工具库介绍与酷炫功能

libfmt: 现代C的格式化工具库介绍与酷炫功能 libfmt 是一个开源的C格式化库,提供了高效、安全的文本格式化功能,是C20中引入的std::format的基础实现。它比传统的printf和iostream更安全、更灵活、性能更好。 基本介绍 主要特点 类型安全&#xff1a…...

解析两阶段提交与三阶段提交的核心差异及MySQL实现方案

引言 在分布式系统的事务处理中,如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议(2PC)通过准备阶段与提交阶段的协调机制,以同步决策模式确保事务原子性。其改进版本三阶段提交协议(3PC&#xf…...