【深度学习】—激活函数、ReLU 函数、 Sigmoid 函数、Tanh 函数
【深度学习】—激活函数、ReLU 函数、 Sigmoid 函数、Tanh 函数
- 4.1.2 激活函数
- ReLU 函数
- 参数化 ReLU
- Sigmoid 函数
- 背景
- 绘制 sigmoid 函数
- Sigmoid 函数的导数
- Tanh 函数
- Tanh 函数的导数
- 总结
4.1.2 激活函数
激活函数(activation function)用于计算加权和并加上偏置,决定神经元是否被激活。它将输入信号转化为可微的输出,大多数激活函数是非线性的。激活函数是深度学习的基础,下面介绍几种常见的激活函数。
ReLU 函数
最受欢迎的激活函数是修正线性单元(Rectified Linear Unit, ReLU),它实现简单且在各种预测任务中表现优异。ReLU 提供了一种非常简单的非线性变换,定义为:

通俗地说,ReLU 通过将负值设为 0,仅保留正数。我们可以通过下列代码绘制 ReLU 函数的曲线来直观感受其行为。正如图中所示,ReLU 是分段线性的。
import torch
from d2l import torch as d2lx = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
y = torch.relu(x)
d2l.plot(x.detach(), y.detach(), 'x', 'relu(x)', figsize=(5, 2.5))

当输入为负时,ReLU 的导数为 0;当输入为正时,导数为 1。当输入值精确等于 0 时,ReLU 不可导,但我们通常忽略这种情况,假设导数为 0。我们可以绘制 ReLU 函数的导数曲线。
y.backward(torch.ones_like(x), retain_graph=True)
d2l.plot(x.detach(), x.grad, 'x', 'grad of relu', figsize=(5, 2.5))

ReLU 的求导性质使得参数要么消失,要么通过,从而优化效果更好,缓解了神经网络中常见的梯度消失问题(将在后续章节介绍)。
参数化 ReLU
ReLU 有许多变体,其中包括参数化 ReLU(Parameterized ReLU, pReLU)。pReLU 为 ReLU 添加了一个线性项,使得即使输入为负,仍有信息可以传递:
pReLU ( x ) = max ( 0 , x ) + α min ( 0 , x ) . \text{pReLU}(x) = \max(0, x) + \alpha \min(0, x). pReLU(x)=max(0,x)+αmin(0,x).
Sigmoid 函数
对于定义域在 R \mathbb{R} R 中的输入,sigmoid 函数将输入变换为区间 ( 0 , 1 ) (0, 1) (0,1) 上的输出,因此 sigmoid 通常称为挤压函数(squashing function)。它将任意输入压缩到区间 ( 0 , 1 ) (0, 1) (0,1) 中的某个值,定义如下:

背景
在早期的神经网络中,科学家们通过 sigmoid 函数模拟生物神经元的激发和非激发。它是阈值单元的平滑可微近似,当输入低于某个阈值时输出接近 0,超过阈值时输出接近 1。由于 sigmoid 的平滑性和可导性,它在基于梯度的学习中得到广泛应用,特别是在将输出视为二元分类问题的概率时,仍然使用 sigmoid 作为输出层的激活函数。
然而,随着 ReLU 函数的引入,sigmoid 在隐藏层中的应用逐渐减少,因为 ReLU 更简单且更易于训练。在后续关于循环神经网络的章节中,我们将探讨如何使用 sigmoid 来控制时序信息流。
绘制 sigmoid 函数
我们可以通过代码绘制 sigmoid 函数曲线。注意,当输入接近 0 时,sigmoid 函数近似线性。
y = torch.sigmoid(x)
d2l.plot(x.detach(), y.detach(), 'x', 'sigmoid(x)', figsize=(5, 2.5))

Sigmoid 函数的导数
sigmoid 函数的导数公式如下:

我们可以通过代码绘制 sigmoid 函数的导数曲线。注意,当输入为 0 时,sigmoid 函数的导数达到最大值 0.25;而当输入远离 0 时,导数逐渐趋近于 0。
# 清除以前的梯度
x.grad.data.zero_()
y.backward(torch.ones_like(x), retain_graph=True)
d2l.plot(x.detach(), x.grad, 'x', 'grad of sigmoid', figsize=(5, 2.5))

这表明 sigmoid 函数在输入较大或较小时的梯度非常小,这导致在深层网络中可能会出现梯度消失问题。
Tanh 函数
与 sigmoid 函数类似,tanh(双曲正切)函数也可以将输入压缩到区间 ( − 1 , 1 ) (-1, 1) (−1,1) 上。tanh 函数的公式如下:

我们可以通过代码绘制 tanh 函数。注意,当输入在 0 附近时,tanh 函数接近线性,且函数关于原点对称。
y = torch.tanh(x)
d2l.plot(x.detach(), y.detach(), 'x', 'tanh(x)', figsize=(5, 2.5))

Tanh 函数的导数
tanh 函数的导数为:

当输入接近 0 时,tanh 函数的导数接近最大值 1。类似于 sigmoid 函数,当输入远离 0 时,导数逐渐趋近于 0。我们可以绘制 tanh 函数的导数图像。
# 清除以前的梯度
x.grad.data.zero_()
y.backward(torch.ones_like(x), retain_graph=True)
d2l.plot(x.detach(), x.grad, 'x', 'grad of tanh', figsize=(5, 2.5))

总结
我们已经了解了如何使用非线性激活函数(如 ReLU、sigmoid 和 tanh)来构建具有更强表达能力的多层神经网络。值得一提的是,如今借助开源的深度学习框架,只需几行代码即可快速构建模型,而在 20 世纪 90 年代,训练这些网络可能需要数千行 C 或 Fortran 代码。
相关文章:
【深度学习】—激活函数、ReLU 函数、 Sigmoid 函数、Tanh 函数
【深度学习】—激活函数、ReLU 函数、 Sigmoid 函数、Tanh 函数 4.1.2 激活函数ReLU 函数参数化 ReLU Sigmoid 函数背景绘制 sigmoid 函数Sigmoid 函数的导数 Tanh 函数Tanh 函数的导数总结 4.1.2 激活函数 激活函数(activation function)用于计算加权和…...
对于基础汇编的趣味认识
汇编语言 机器指令 机器语言是机器指令的集合 机器指令展开来讲就是一台机器可以正确执行的命令 电子计算机的机器指令是一列二进制数字 (计算机将其转变为一列高低电平,使得计算机的电子器件受到驱动,进行运算 寄存器:微处理器…...
网络基础知识笔记(一)
什么是计算机网络 1.计算机网络发展的第一个阶段:(60年代) 标志性事件:ARPANET 关键技术:分组交换 计算机网络发展的第二个阶段:(70-80年代) 标志性事件:NSFNET 关键技术:TCP/IP 计算机网络发展的第三个阶段ÿ…...
fatal: urdf 中的 CRLF 将被 LF 替换
git add relaxed_ik_ros2 fatal: relaxed_ik_ros2/relaxed_ik_core/configs/urdfs/mobile_spot_arm.urdf 中的 CRLF 将被 LF 替换 这个错误信息表示 Git 在处理文件 mobile_spot_arm.urdf 时发现它使用了 CRLF(回车换行符,常见于 Windows 系统࿰…...
构建electron项目
1. 使用electron-vite构建工具 官网链接 安装构建工具 pnpm i electron-vite -g创建electron-vite项目 pnpm create quick-start/electron安装所有依赖 pnpm i其他 pnpm -D add sass scss1. 启动项目 2. 配置 package.json "dev": "electron-vite dev --…...
Stable Diffusion绘画 | 插件-Deforum:动态视频生成(中篇)
本篇文章重点讲解参数最多的 关键帧 模块。 「动画模式」选择「3D」: 下方「运动」Tab 会有一系列参数: 以下4个参数,只有「动画模式」选择「2D」才会生效,可忽略: 运动 平移 X 让镜头左右移动: 大于0&a…...
STM32中断——外部中断
目录 一、概述 二、外部中断(Extern Interrupt简称EXTI) 三、实例-对射式红外传感器 1、配置中断: 2 、完整代码 一、概述 中断:在主程序运行过程中,出现了特定的中断触发条件(中断源),使得CPU暂停当…...
LeetCode78 子集
题目: 给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的 子集(幂集)。 解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。 示例 1: 输入:nums [1,2,3] 输出:[[…...
《python语言程序设计》2018版第8章19题几何Rectangle2D类(下)-头疼的几何和数学
希望这个下集里能有完整的代码 一、containsPoint实现 先从网上找一下Statement expected, found Py:DEDENTTAB还是空格呢??小小总结如何拆分矩形的四个点呢.我们来小小的测试一下这个函数结果出在哪里呢???修改完成variable in function should be lowercase 函数变量应该…...
【C++】入门基础介绍(上)C++的发展历史与命名空间
文章目录 1. 前言2. C发展历史2. 1 C版本更新特性一览2. 2 关于C23的一个小故事: 3. C的重要性3. 1 编程语言排行榜3. 2 C在工作领域中的应用 4. C学习建议和书籍推荐4. 1 C学习难度4. 2 学习书籍推荐 5. C的第一个程序6. 命名空间6. 1 namespace的价值6. 2 namespace的定义6. …...
dll动态库加载失败导致程序启动报错以及dll库加载失败的常见原因分析与总结
目录 1、问题说明 2、dll库的隐式加载与动态加载 2.1、dll库的隐式加载 2.2、dll库的显式加载 3、使用Process Explorer查看进程加载的dll库信息以及动态加载的dll库有没有加载成功 3.1、使用Process Explorer查看进程加载的dll库信息 3.2、使用Process Explorer查看动态…...
SAP MM学习笔记 - 豆知识10 - OMSY 初期化会计期间,ABAP调用MMPV/MMRV来批量更新会计期间(TODO)
之前用MMRV,MMPV来一次一个月来修改会计期间。 如果是老的测试机,可能是10几年前的,一次1个月,更新到当前期间,搞个100多次,手都抖。 SAP MM学习笔记 - 错误 M7053 - Posting only possible in periods 2…...
Pytorch实现RNN实验
一、实验要求 用 Pytorch 模块的 RNN 实现生成唐诗。要求给定一个字能够生成一首唐诗。 二、实验目的 理解循环神经网络(RNN)的基本原理:通过构建一个基于RNN的诗歌生成模型,学会RNN是如何处理序列数据的,以及如何在…...
四、Drf认证组件
四、Drf认证组件 4.1 快速使用 from django.shortcuts import render,HttpResponse from rest_framework.response import Response from rest_framework.views import APIView from rest_framework.authentication import BaseAuthentication from rest_framework.exception…...
C++:静态成员
静态成员涉及到的关键字尾static 静态成员变量要在类外初始化 去掉static关键字类型类名::变量名 静态成员变量不属于任何对象 所有对象共享一份 静态成员可以不通过对象直接访问 类名::成员名 静态成员依旧受访问修饰符的约束 …...
28 Vue3之搭建公司级项目规范
可以看到保存的时候ref这行被提到了最前面的一行 要求内置库放在组件的前面称为auto fix,数组new arry改成了字面量,这就是我们配置的规范 js规范使用的是airbnb规范模块使用的是antfu 组合prettier&eslint airbnb规范: https://github…...
【pytorch】张量求导3
再接上文,补一下作者未补完的矩阵运算的坑。 首先贴一下原作者的图,将其转化为如下代码: import torch import torch.nn as nn import torch.optim as optim# 定义一个简单的两层神经网络 class TwoLayerNet(nn.Module):def __init__(self):super(TwoLayerNet, self).__in…...
Servlet——springMvc底层原理
我们也先了解一下什么的动态资源,什么是静态资源。 静态资源:无需程序运行就可以获取的资源(照片、html、css、js等) 动态资源:需要通关程序运行才可以获得的资源。 (其实动态、静态的资源都与Servlet有…...
Json 在线可视化工具,分享几个
文章目录 1.json.cn2.json4u.cn3.jsonvisual.com4.jsoncrack5.altearius.github.io6.json.wanvb.com 前序:本文是对多种 Json 在线可视化工具 的介绍、分享。Json官网 https://www.json.org/json-en.html 个人比较中意第四款: https://jsoncrack.com/ed…...
LLM | llama.cpp 安装使用(支持CPU、Metal及CUDA的单卡/多卡推理)
1. 详细步骤 1.1 安装 cuda 等 nvidia 依赖(非CUDA环境运行可跳过) # 以 CUDA Toolkit 12.4: Ubuntu-22.04/24.04(x86_64) 为例,注意区分 WSL 和 Ubuntu,详见 https://developer.nvidia.com/cuda-12-4-1-download-archive?targ…...
C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
STM32F4基本定时器使用和原理详解
STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...
JVM虚拟机:内存结构、垃圾回收、性能优化
1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...
安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...
