当前位置: 首页 > news >正文

Spring Boot中线程池使用

说明:在一些场景,如导入数据,批量插入数据库,使用常规方法,需要等待较长时间,而使用线程池可以提高效率。本文介绍如何在Spring Boot中使用线程池来批量插入数据。

搭建环境

首先,创建一个Spring Boot项目,pom文件如下:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.7.12</version><relativePath/></parent><groupId>com.hezy</groupId><artifactId>thread_pool_demo</artifactId><version>1.0-SNAPSHOT</version><properties><maven.compiler.source>11</maven.compiler.source><maven.compiler.target>11</maven.compiler.target><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding></properties><dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId></dependency><dependency><groupId>com.alibaba</groupId><artifactId>druid-spring-boot-starter</artifactId><version>1.2.8</version></dependency><dependency><groupId>com.mysql</groupId><artifactId>mysql-connector-j</artifactId><scope>runtime</scope></dependency><dependency><groupId>org.mybatis.spring.boot</groupId><artifactId>mybatis-spring-boot-starter</artifactId><version>2.2.2</version></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-test</artifactId><scope>test</scope></dependency><dependency><groupId>cn.hutool</groupId><artifactId>hutool-all</artifactId><version>5.8.6</version></dependency></dependencies>
</project>

写一个插入数据的Mapper方法

import com.hezy.pojo.User;
import org.apache.ibatis.annotations.Insert;
import org.apache.ibatis.annotations.Mapper;
import org.apache.ibatis.annotations.Param;@Mapper
public interface UserMapper {@Insert("insert into i_users (username, password) values (#{user.username}, #{user.password})")void insert(@Param("user") User user);
}

写一个接口,用来插入20万条记录,如下:

import com.hezy.pojo.User;
import com.hezy.service.AsyncService;
import com.hezy.service.UserService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;import java.util.ArrayList;@RestController
@RequestMapping("user")
public class UserController {/*** 总记录数*/private final static int SIZE = 40 * 10000;@Autowiredprivate UserService userService;@Autowiredprivate AsyncService asyncService;@GetMapping("insert1")public void insert1() {ArrayList<User> list = new ArrayList<>(SIZE);for (int i = 0; i < SIZE; i++) {User user = new User();user.setUsername("user" + i);user.setPassword("password" + i);list.add(user);}long startTime = System.currentTimeMillis();// 批量插入for (User user : list) {userService.insert(user);}long endTime = System.currentTimeMillis();System.out.println("不用线程池===插入40万条记录耗时:" + ((endTime - startTime) / 1000) + "s");}
}

启动项目,测试一下,看要多长时间……11分钟

在这里插入图片描述

使用线程池

Spring Boot有自动注入的线程池(threadPoolTaskExecutor),可以手动设置一些属性,为我们所用。

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.scheduling.annotation.EnableAsync;
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;import java.util.concurrent.Executor;
import java.util.concurrent.ThreadPoolExecutor;@Configuration
@EnableAsync
public class ThreadPoolConfig {@Bean(name = "threadPoolTaskExecutor")public Executor threadPoolTaskExecutor() {ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();executor.setCorePoolSize(20);executor.setMaxPoolSize(40);executor.setQueueCapacity(500);executor.setKeepAliveSeconds(60);executor.setThreadNamePrefix("hezy-");executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());executor.initialize();return executor;}
}

使用线程池来完成上面插入数据的操作,如下:

    @GetMapping("insert2")public void insert2() {ArrayList<User> list = new ArrayList<>(SIZE);for (int i = 0; i < SIZE; i++) {User user = new User();user.setUsername("user" + i);user.setPassword("password" + i);list.add(user);}// 将数据分成4000批,每批插入100条List<List<User>> batchList = new ArrayList<>();for (int i = 0; i < list.size(); i += 100) {batchList.add(list.subList(i, i + 100));}long startTime = System.currentTimeMillis();CountDownLatch countDownLatch = new CountDownLatch(batchList.size());// 线程池分批插入for (List<User> batch : batchList) {asyncService.executeAsync(batch, userService, countDownLatch);}try {countDownLatch.await();} catch (InterruptedException e) {throw new RuntimeException(e);}long endTime = System.currentTimeMillis();System.out.println("使用线程池===插入40万条记录耗时:" + ((endTime - startTime) / 1000) + "s");}

AsyncService实现类

import com.hezy.pojo.User;
import com.hezy.service.AsyncService;
import com.hezy.service.UserService;
import org.springframework.scheduling.annotation.Async;
import org.springframework.stereotype.Service;import java.util.List;
import java.util.concurrent.CountDownLatch;@Service
public class AsyncServiceImpl implements AsyncService {@Async("threadPoolTaskExecutor")@Overridepublic void executeAsync(List<User> batch, UserService userService, CountDownLatch countDownLatch) {try {for (User user : batch) {userService.insert(user);}} finally {countDownLatch.countDown();}}
}

启动,测试,速度提升很明显。如果再改造一下insert()方法,一次插入多条数据,肯定还能更快。

在这里插入图片描述

总结

本文介绍如何使用Spring Boot装配的线程池Bean,完成大数据量的批量插入操作,提高程序执行效率。

实例完整代码:https://github.com/HeZhongYing/thread_pool_demo

参考B站UP主(孟哥说Java)视频:https://www.bilibili.com/video/BV18r421F7CQ

相关文章:

Spring Boot中线程池使用

说明&#xff1a;在一些场景&#xff0c;如导入数据&#xff0c;批量插入数据库&#xff0c;使用常规方法&#xff0c;需要等待较长时间&#xff0c;而使用线程池可以提高效率。本文介绍如何在Spring Boot中使用线程池来批量插入数据。 搭建环境 首先&#xff0c;创建一个Spr…...

Python机器学习:自然语言处理、计算机视觉与强化学习

&#x1f4d8; Python机器学习&#xff1a;自然语言处理、计算机视觉与强化学习 目录 ✨ 自然语言处理&#xff08;NLP&#xff09; 文本预处理&#xff1a;分词、去停用词词向量与文本分类&#xff1a;使用Word2Vec与BERT &#x1f306; 计算机视觉基础 图像预处理与增强目标…...

Vue2 + ElementUI + axios + VueRouter入门

之前没有pc端开发基础&#xff0c;工作需要使用若依框架进行了一年的前端开发.最近看到一个视频框架一步步集成&#xff0c;感觉颇受启发&#xff0c;在此记录一下学习心得。视频链接:vue2element ui 快速入门 环境搭建和依赖安装 安装nodejs安装Vue Cli使用vue create proje…...

GO网络编程(四):海量用户通信系统2:登录功能核心【重难点】

目录 一、C/S详细通信流程图二、消息类型定义与json标签1. 消息类型定义2. JSON标签3.结构体示例及其 JSON 表示&#xff1a;4.完整代码与使用说明 三、客户端发送消息1. 连接到服务器2. 准备发送消息3. 创建 LoginMes 并序列化4. 将序列化后的数据嵌入消息结构5. 序列化整个 M…...

某项目实战分析代码二

某项目实战分析代码二 此次分析的是protobuf的使用操作流程具体实现 3. 业务数据分析3.1 客户端3.2 服务器端简单案例 此次分析的是protobuf的使用 Protocol Buffer( 简称 Protobuf) 是Google公司内部的混合语言数据标准&#xff0c;它是一种轻便高效的结构化数据存储格式&…...

全面指南:探索并实施解决Windows系统中“mfc140u.dll丢失”的解决方法

当你的电脑出现mfc140u.dll丢失的问题是什么情况呢&#xff1f;mfc140u.dll文件依赖了什么&#xff1f;mfc140u.dll丢失会导致电脑出现什么情况&#xff1f;今天这篇文章就和大家聊聊mfc140u.dll丢失的解决办法。希望能够有效的帮助你解决这问题。 哪些程序依赖mfc140u.dll文件…...

QT学习笔记1(QT和QT creator介绍)

QT学习笔记1&#xff08;QT和QT creator介绍&#xff09; Qt 是一个跨平台的应用开发框架&#xff0c;主要用于图形用户界面&#xff08;GUI&#xff09;应用的开发&#xff0c;但也支持非GUI程序的开发。Qt 支持多种平台&#xff0c;如Windows、macOS、Linux、iOS和Android&a…...

存储电话号码的数据类型,用 int 还是用 string?

在 Java 编程中&#xff0c;存储电话号码的选择可以通过两种常见方式进行&#xff1a;使用 int 类型或 String 类型。这种选择看似简单&#xff0c;但实际上涉及到 JVM 内部的字节码实现、内存优化、数据表示、以及潜在的可扩展性问题。 Java 基本数据类型与引用数据类型的差异…...

【目标检测】工程机械车辆数据集2690张4类VOC+YOLO格式

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;2694 标注数量(xml文件个数)&#xff1a;2694 标注数量(txt文件个数)&#xff1a;2694 标注…...

target_link_libraries()

target_link_libraries() 是 CMake 中的一个命令&#xff0c;用于指定目标&#xff08;如可执行文件或库&#xff09;所依赖的其他库。其主要作用包括&#xff1a; 链接库&#xff1a;将指定的库链接到目标上&#xff0c;使目标能够调用这些库中的函数和使用其功能。 管理依赖…...

Javascript数组研究09_Array.prototype[Symbol.unscopables]

Symbol.unscopables 是 JavaScript 中一个相对较新的符号&#xff08;Symbol&#xff09;&#xff0c;用于控制对象属性在 with 语句中的可见性。它主要用于内置对象&#xff0c;如 Array.prototype&#xff0c;以防止某些方法被引入到 with 语句的作用域中&#xff0c;避免潜在…...

SkyWalking 自定义链路追踪

对项目中的业务方法&#xff0c;实现链路追踪&#xff0c;方便我们排查问题 引入依赖 <!‐‐ SkyWalking 工具类 ‐‐> <dependency> <groupId>org.apache.skywalking</groupId> <artifactId>apm‐toolkit‐trace</artifactId> <vers…...

Linux驱动开发(速记版)--设备模型

第八十章 设备模型基本框架-kobject 和 kset 80.1 什么是设备模型 设备模型使Linux内核处理复杂设备更高效。 字符设备驱动适用于简单设备&#xff0c;但对于电源管理和热插拔&#xff0c;不够灵活。 设备模型允许开发人员以高级方式描述硬件及关系&#xff0c;提供API处理设备…...

动手学深度学习(李沐)PyTorch 第 6 章 卷积神经网络

李宏毅-卷积神经网络CNN 如果使用全连接层&#xff1a;第一层的weight就有3*10^7个 观察 1&#xff1a;检测模式不需要整张图像 很多重要的pattern只要看小范围即可 简化1&#xff1a;感受野 根据观察1 可以做第1个简化&#xff0c;卷积神经网络会设定一个区域&#xff0c…...

新编英语语法教程

新编英语语法教程 1. 新编英语语法教程 (第 6 版) 学生用书1.1. 目录1.2. 电子课件 References A New English Grammar Coursebook 新编英语语法教程 (第 6 版) 学生用书新编英语语法教程 (第 6 版) 教师用书 1. 新编英语语法教程 (第 6 版) 学生用书 https://erp.sflep.cn/…...

Golang 服务器虚拟化应用案例

推荐学习文档 golang应用级os框架&#xff0c;欢迎stargolang应用级os框架使用案例&#xff0c;欢迎star案例&#xff1a;基于golang开发的一款超有个性的旅游计划app经历golang实战大纲golang优秀开发常用开源库汇总想学习更多golang知识&#xff0c;这里有免费的golang学习笔…...

Elasticsearch基础_4.ES搜索功能

文章目录 一、搜索辅助功能1.1、指定返回的字段1.2、结果计数1.3、结果分页 二、搜索匹配功能2.1、查询所有文档2.2、term级别查询2.2.1、term查询2.2.2、terms查询2.2.3、range查询2.2.4、exists查询 2.3、布尔查询2.3.1、must&#xff0c;should&#xff0c;must_not2.3.2、f…...

Elasticsearch要点简记

Elasticsearch要点简记 1、ES概述2、基础概念&#xff08;1&#xff09;索引、文档、字段&#xff08;2&#xff09;映射&#xff08;3&#xff09;DSL 3、架构原理4、索引字段的数据类型5、ES的三种分页方式&#xff08;1&#xff09;深度分页&#xff08;fromsize&#xff09…...

【通信协议】IIC通信协议详解

IIC&#xff08;Inter-Integrated Circuit&#xff09;通信协议&#xff0c;又称为I2C&#xff08;Inter-Integrated Circuit 2&#xff09;协议&#xff0c;是一种广泛使用的串行通信协议。它由Philips Semiconductor&#xff08;现NXP Semiconductors&#xff09;开发&#x…...

2024年中国科技核心期刊目录(社会科学卷)

2024年中国科技核心期刊目录 &#xff08;社会科学卷&#xff09; 序号 期刊代码 期刊名称 1 SC02 JOURNAL OF S…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留&#xff0c;CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制&#xff08;CCA-Attention&#xff09;&#xff0c;…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包&#xff08;Closure&#xff09;&#xff1f;闭包有什么应用场景和潜在问题&#xff1f;2.解释 JavaScript 的作用域链&#xff08;Scope Chain&#xff09; 二、原型与继承3.原型链是什么&#xff1f;如何实现继承&a…...