当前位置: 首页 > news >正文

Django一分钟:在Django中怎么存储树形结构的数据,DRF校验递归嵌套模型的替代方案

引言

在开发过程中我们可能需要这样的树形结构:

[{"data": {"name": "牛奶"},"children": [{"data": {"name": "蒙牛"}, },{"data": {"name": "伊利"}, }]},{"data": {"name": "面包"},"children": [{"data": {"name": "黑面包"}, },{"data": {"name": "白面包"}, }]}
]

这种需求很常见,比如:分层的用户组、产品组件表等等,你都会用到树形结构,为这样的需求在django中自己从头创建模型并实现一系列的API是一个相当大的工作,好在我们有很多现成的库可以使用。

如果你在想:Django能不能做到某件事情;来这个网站看看是个好习惯。

一、创建和使用模型

本文中我们用到的库是django-treebeard

pip install django-treebeard

django-treebeard提供了三种实现方式:邻接表、嵌套集、路径树(MPTT)。下面我们使用路径树来演示,创建模型如下:

class Category(MP_Node):name = models.CharField(max_length=30)node_order_by = ['name']def __str__(self):return 'Category: {}'.format(self.name)

路径树会为你额外创建三个字段来辅助定义结构分别是pathdepthnumchild,它的插入和更新等维护比较繁重,但查询速度相当快。本文中我们不具体讨论实现原理,只是做简单使用演示,并为你可能遇到的问题提供思路,想详细了解其所有API阅读其文档。

定义好模型之后,模型中的一些方法可以辅助我们完成序列化和反序列化,快速的在数据库中保存和拉取数据:

>>> data =[{# tree1"data": {"name": "牛奶"},"children": [{"data": {"name": "蒙牛"}, },{"data": {"name": "伊利"}, }]},{# tree2"data": {"name": "面包"},"children": [{"data": {"name": "黑面包"}, },{"data": {"name": "白面包"}, }]}
]
>>> Category.load_bulk(data)
>>> Category.dump_bulk()
# [{'data': {'name': '牛奶'}, 'id': 1, 'children': [{'data': {'name': '伊利'}, 'id': 3}, {'data': {'name': '蒙牛'}, 'id': 2}]}, {'data': {'name': '面包'}, 'id': 4, 'children': [{'data': {'name': '白面包'}, 'id': 6}, {'data': {'name': '黑面包'}, 'id': 5}]}]

二、数据校验

假如你使用django rest framework为这样的递归嵌套的模型创建序列化器非常的困难,我推荐的解决方法是使用pydantic,如果你学习过FastAPI框架你应该对它不陌生。pydantic无法从django模型中自动生成模型,你需要自己定义:

from pydantic import BaseModelclass CategoryNodelModel(BaseModel):name: strclass CategoryTreeModel(BaseModel):data: CategoryNodelModelchildren: list['CategoryTreeModel'] | None = None

使用方法:

# 假设用户输入
>>> data = [{# tree1"data": {"name": "牛奶"},"children": [{"data": {"name": "蒙牛"}, },{"data": {"name": "伊利"}, }]},{# tree2"data": {"name": "面包"},"children": [{"data": {"name": "黑面包"}, },{"data": {"name": "白面包"}, }]}
]
# 测试用户输入的结构是否正确
>>> [CategoryTreeModel(**tree) for tree in data]
# 保存到数据库
>>> Category.load_bulk(data)

下面是测试代码,包含对一些api的简单演示:

from rest_framework.test import APITestCase
from api.models import Category
from api.views import CategoryS, CategoryNodelModel, CategoryTreeModelclass TestCategory(APITestCase):def setUp(self):# 用户输入data = [{# tree1"data": {"name": "牛奶"},"children": [{"data": {"name": "蒙牛"}, },{"data": {"name": "伊利"}, }]},{# tree2"data": {"name": "面包"},"children": [{"data": {"name": "黑面包"}, },{"data": {"name": "白面包"}, }]}]# 测试用户输入的结构是否正确[CategoryTreeModel(**tree) for tree in data]Category.load_bulk(data)def test_get_all(self):print(Category.dump_bulk())def test_get_tree(self):milk = Category.objects.filter(name='牛奶').first()if milk:print(Category.dump_bulk(milk))def test_delete(self):milk = Category.objects.filter(name='面包').first()milk.delete()print(Category.dump_bulk())

总结

对于在django中使用树、图等复杂结构之类需求,可以去尝试寻找现成的库;对于复杂数据的校验可以尝试使用pydantic。选择合适的工具会为我们节省很多时间。

相关文章:

Django一分钟:在Django中怎么存储树形结构的数据,DRF校验递归嵌套模型的替代方案

引言 在开发过程中我们可能需要这样的树形结构: [{"data": {"name": "牛奶"},"children": [{"data": {"name": "蒙牛"}, },{"data": {"name": "伊利"}, }]},{"da…...

【Docker从入门到进阶】06.常见问题与解决方案 07.总结与资源

6. 常见问题与解决方案 在使用Docker进行开发和部署过程中,可能会遇到各种问题。以下是一些常见问题及其解决方案: 容器启动失败和调试 在使用 Docker 时,容器启动失败或立即退出可能会导致一定的困扰,以下是进一步深入解决该问…...

快速排序的非递归实现:借助栈实现、借助队列实现

目录 用栈实现快速排序 1.用栈实现非递归快速排序的思路步骤 1.1.思路步骤 2.用栈实现非递归快速排序的代码 3.用栈实现非递归快速排序的整个工程 3.1.QuickSortNonR.h 3.2.QuickSortNonR.c 3.3.Stack.h 3.4.Stack.c 用队列实现非递归快速排序 1.用队列实现非递归快…...

Finops成本优化企业实践-可视化篇

引言:上一章讨论了finops的一些方法论,笔者在拿到finops官方认证finops-engineer certificate之后,将方法论运用到所在项目组中,并于今年完成了40%的费用节省。在此将这些实践方法总结沉淀,与大家分享。实践包括三篇&a…...

Spring Boot中线程池使用

说明:在一些场景,如导入数据,批量插入数据库,使用常规方法,需要等待较长时间,而使用线程池可以提高效率。本文介绍如何在Spring Boot中使用线程池来批量插入数据。 搭建环境 首先,创建一个Spr…...

Python机器学习:自然语言处理、计算机视觉与强化学习

📘 Python机器学习:自然语言处理、计算机视觉与强化学习 目录 ✨ 自然语言处理(NLP) 文本预处理:分词、去停用词词向量与文本分类:使用Word2Vec与BERT 🌆 计算机视觉基础 图像预处理与增强目标…...

Vue2 + ElementUI + axios + VueRouter入门

之前没有pc端开发基础,工作需要使用若依框架进行了一年的前端开发.最近看到一个视频框架一步步集成,感觉颇受启发,在此记录一下学习心得。视频链接:vue2element ui 快速入门 环境搭建和依赖安装 安装nodejs安装Vue Cli使用vue create proje…...

GO网络编程(四):海量用户通信系统2:登录功能核心【重难点】

目录 一、C/S详细通信流程图二、消息类型定义与json标签1. 消息类型定义2. JSON标签3.结构体示例及其 JSON 表示:4.完整代码与使用说明 三、客户端发送消息1. 连接到服务器2. 准备发送消息3. 创建 LoginMes 并序列化4. 将序列化后的数据嵌入消息结构5. 序列化整个 M…...

某项目实战分析代码二

某项目实战分析代码二 此次分析的是protobuf的使用操作流程具体实现 3. 业务数据分析3.1 客户端3.2 服务器端简单案例 此次分析的是protobuf的使用 Protocol Buffer( 简称 Protobuf) 是Google公司内部的混合语言数据标准,它是一种轻便高效的结构化数据存储格式&…...

全面指南:探索并实施解决Windows系统中“mfc140u.dll丢失”的解决方法

当你的电脑出现mfc140u.dll丢失的问题是什么情况呢?mfc140u.dll文件依赖了什么?mfc140u.dll丢失会导致电脑出现什么情况?今天这篇文章就和大家聊聊mfc140u.dll丢失的解决办法。希望能够有效的帮助你解决这问题。 哪些程序依赖mfc140u.dll文件…...

QT学习笔记1(QT和QT creator介绍)

QT学习笔记1(QT和QT creator介绍) Qt 是一个跨平台的应用开发框架,主要用于图形用户界面(GUI)应用的开发,但也支持非GUI程序的开发。Qt 支持多种平台,如Windows、macOS、Linux、iOS和Android&a…...

存储电话号码的数据类型,用 int 还是用 string?

在 Java 编程中,存储电话号码的选择可以通过两种常见方式进行:使用 int 类型或 String 类型。这种选择看似简单,但实际上涉及到 JVM 内部的字节码实现、内存优化、数据表示、以及潜在的可扩展性问题。 Java 基本数据类型与引用数据类型的差异…...

【目标检测】工程机械车辆数据集2690张4类VOC+YOLO格式

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):2694 标注数量(xml文件个数):2694 标注数量(txt文件个数):2694 标注…...

target_link_libraries()

target_link_libraries() 是 CMake 中的一个命令,用于指定目标(如可执行文件或库)所依赖的其他库。其主要作用包括: 链接库:将指定的库链接到目标上,使目标能够调用这些库中的函数和使用其功能。 管理依赖…...

Javascript数组研究09_Array.prototype[Symbol.unscopables]

Symbol.unscopables 是 JavaScript 中一个相对较新的符号(Symbol),用于控制对象属性在 with 语句中的可见性。它主要用于内置对象,如 Array.prototype,以防止某些方法被引入到 with 语句的作用域中,避免潜在…...

SkyWalking 自定义链路追踪

对项目中的业务方法&#xff0c;实现链路追踪&#xff0c;方便我们排查问题 引入依赖 <!‐‐ SkyWalking 工具类 ‐‐> <dependency> <groupId>org.apache.skywalking</groupId> <artifactId>apm‐toolkit‐trace</artifactId> <vers…...

Linux驱动开发(速记版)--设备模型

第八十章 设备模型基本框架-kobject 和 kset 80.1 什么是设备模型 设备模型使Linux内核处理复杂设备更高效。 字符设备驱动适用于简单设备&#xff0c;但对于电源管理和热插拔&#xff0c;不够灵活。 设备模型允许开发人员以高级方式描述硬件及关系&#xff0c;提供API处理设备…...

动手学深度学习(李沐)PyTorch 第 6 章 卷积神经网络

李宏毅-卷积神经网络CNN 如果使用全连接层&#xff1a;第一层的weight就有3*10^7个 观察 1&#xff1a;检测模式不需要整张图像 很多重要的pattern只要看小范围即可 简化1&#xff1a;感受野 根据观察1 可以做第1个简化&#xff0c;卷积神经网络会设定一个区域&#xff0c…...

新编英语语法教程

新编英语语法教程 1. 新编英语语法教程 (第 6 版) 学生用书1.1. 目录1.2. 电子课件 References A New English Grammar Coursebook 新编英语语法教程 (第 6 版) 学生用书新编英语语法教程 (第 6 版) 教师用书 1. 新编英语语法教程 (第 6 版) 学生用书 https://erp.sflep.cn/…...

Golang 服务器虚拟化应用案例

推荐学习文档 golang应用级os框架&#xff0c;欢迎stargolang应用级os框架使用案例&#xff0c;欢迎star案例&#xff1a;基于golang开发的一款超有个性的旅游计划app经历golang实战大纲golang优秀开发常用开源库汇总想学习更多golang知识&#xff0c;这里有免费的golang学习笔…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。

1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj&#xff0c;再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲

文章目录 前言第一部分&#xff1a;体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分&#xff1a;体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...

沙箱虚拟化技术虚拟机容器之间的关系详解

问题 沙箱、虚拟化、容器三者分开一一介绍的话我知道他们各自都是什么东西&#xff0c;但是如果把三者放在一起&#xff0c;它们之间到底什么关系&#xff1f;又有什么联系呢&#xff1f;我不是很明白&#xff01;&#xff01;&#xff01; 就比如说&#xff1a; 沙箱&#…...

MeshGPT 笔记

[2311.15475] MeshGPT: Generating Triangle Meshes with Decoder-Only Transformers https://library.scholarcy.com/try 真正意义上的AI生成三维模型MESHGPT来袭&#xff01;_哔哩哔哩_bilibili GitHub - lucidrains/meshgpt-pytorch: Implementation of MeshGPT, SOTA Me…...

C++11 constexpr和字面类型:从入门到精通

文章目录 引言一、constexpr的基本概念与使用1.1 constexpr的定义与作用1.2 constexpr变量1.3 constexpr函数1.4 constexpr在类构造函数中的应用1.5 constexpr的优势 二、字面类型的基本概念与使用2.1 字面类型的定义与作用2.2 字面类型的应用场景2.2.1 常量定义2.2.2 模板参数…...

基于小程序老人监护管理系统源码数据库文档

摘 要 近年来&#xff0c;随着我国人口老龄化问题日益严重&#xff0c;独居和居住养老机构的的老年人数量越来越多。而随着老年人数量的逐步增长&#xff0c;随之而来的是日益突出的老年人问题&#xff0c;尤其是老年人的健康问题&#xff0c;尤其是老年人产生健康问题后&…...