当前位置: 首页 > news >正文

正态分布的极大似然估计一个示例,详细展开的方程求解步骤

此示例是 什么是极大似然估计 中的一个例子,本文的目的是给出更加详细的方程求解步骤,便于数学基础不好的同学理解。

目标

假设我们有一组样本数据 x 1 , x 2 , … , x n x_1, x_2, \dots, x_n x1,x2,,xn,它们来自一个正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2),我们的目标是通过极大似然估计(MLE)来找到正态分布的两个参数 μ \mu μ σ 2 \sigma^2 σ2

对数似然函数

正态分布的概率密度函数为:
f ( x i ∣ μ , σ 2 ) = 1 2 π σ 2 exp ⁡ ( − ( x i − μ ) 2 2 σ 2 ) f(x_i | \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left( -\frac{(x_i - \mu)^2}{2\sigma^2} \right) f(xiμ,σ2)=2πσ2 1exp(2σ2(xiμ)2)

给定样本 x 1 , x 2 , … , x n x_1, x_2, \dots, x_n x1,x2,,xn,样本的似然函数为:
L ( μ , σ 2 ) = ∏ i = 1 n 1 2 π σ 2 exp ⁡ ( − ( x i − μ ) 2 2 σ 2 ) L(\mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left( -\frac{(x_i - \mu)^2}{2\sigma^2} \right) L(μ,σ2)=i=1n2πσ2 1exp(2σ2(xiμ)2)

对似然函数取对数,得到对数似然函数:
ℓ ( μ , σ 2 ) = log ⁡ L ( μ , σ 2 ) = ∑ i = 1 n log ⁡ ( 1 2 π σ 2 exp ⁡ ( − ( x i − μ ) 2 2 σ 2 ) ) \ell(\mu, \sigma^2) = \log L(\mu, \sigma^2) = \sum_{i=1}^n \log \left( \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left( -\frac{(x_i - \mu)^2}{2\sigma^2} \right) \right) (μ,σ2)=logL(μ,σ2)=i=1nlog(2πσ2 1exp(2σ2(xiμ)2))

我们可以将对数似然函数分解为三部分:
ℓ ( μ , σ 2 ) = − n 2 log ⁡ ( 2 π ) − n 2 log ⁡ ( σ 2 ) − 1 2 σ 2 ∑ i = 1 n ( x i − μ ) 2 \ell(\mu, \sigma^2) = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 (μ,σ2)=2nlog(2π)2nlog(σ2)2σ21i=1n(xiμ)2

现在我们分别对 μ \mu μ σ 2 \sigma^2 σ2 求导。


一、对 μ \mu μ 求导

首先,对 μ \mu μ 求导,方程中的 μ \mu μ 仅出现在最后一项 ∑ i = 1 n ( x i − μ ) 2 \sum_{i=1}^n (x_i - \mu)^2 i=1n(xiμ)2 中,因此我们只对这一项求导:
ℓ ( μ , σ 2 ) = − 1 2 σ 2 ∑ i = 1 n ( x i − μ ) 2 \ell(\mu, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 (μ,σ2)=2σ21i=1n(xiμ)2

μ \mu μ 求导:
∂ ℓ ∂ μ = − 1 2 σ 2 ⋅ 2 ∑ i = 1 n ( x i − μ ) ( − 1 ) \frac{\partial \ell}{\partial \mu} = -\frac{1}{2\sigma^2} \cdot 2 \sum_{i=1}^n (x_i - \mu) (-1) μ=2σ212i=1n(xiμ)(1)

简化后为:
∂ ℓ ∂ μ = 1 σ 2 ∑ i = 1 n ( x i − μ ) \frac{\partial \ell}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) μ=σ21i=1n(xiμ)

将这个导数设为 0,来找到 μ \mu μ 的极大似然估计:
1 σ 2 ∑ i = 1 n ( x i − μ ) = 0 \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) = 0 σ21i=1n(xiμ)=0

因为 σ 2 ≠ 0 \sigma^2 \neq 0 σ2=0,我们可以省略 1 σ 2 \frac{1}{\sigma^2} σ21,得到:
∑ i = 1 n ( x i − μ ) = 0 \sum_{i=1}^n (x_i - \mu) = 0 i=1n(xiμ)=0

简化为:
n μ = ∑ i = 1 n x i n\mu = \sum_{i=1}^n x_i nμ=i=1nxi

因此, μ \mu μ 的极大似然估计为:
μ ^ = 1 n ∑ i = 1 n x i \hat{\mu} = \frac{1}{n} \sum_{i=1}^n x_i μ^=n1i=1nxi

这意味着,样本的均值是 μ \mu μ 的极大似然估计。


二、对 σ 2 \sigma^2 σ2 求导

接下来我们对 σ 2 \sigma^2 σ2 求导。对数似然函数中关于 σ 2 \sigma^2 σ2 的部分是:
ℓ ( μ , σ 2 ) = − n 2 log ⁡ ( 2 π ) − n 2 log ⁡ ( σ 2 ) − 1 2 σ 2 ∑ i = 1 n ( x i − μ ) 2 \ell(\mu, \sigma^2) = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 (μ,σ2)=2nlog(2π)2nlog(σ2)2σ21i=1n(xiμ)2

我们对 σ 2 \sigma^2 σ2 求导,逐项进行求导:

  1. 第一项 − n 2 log ⁡ ( 2 π ) -\frac{n}{2} \log(2\pi) 2nlog(2π) 是常数,对 σ 2 \sigma^2 σ2 求导为 0。

  2. 第二项 − n 2 log ⁡ ( σ 2 ) -\frac{n}{2} \log(\sigma^2) 2nlog(σ2)

    使用对数函数的求导公式 d d σ 2 ( log ⁡ σ 2 ) = 1 σ 2 \frac{d}{d\sigma^2} (\log \sigma^2) = \frac{1}{\sigma^2} dσ2d(logσ2)=σ21,我们有:
    ∂ ∂ σ 2 ( − n 2 log ⁡ ( σ 2 ) ) = − n 2 σ 2 \frac{\partial}{\partial \sigma^2} \left( -\frac{n}{2} \log(\sigma^2) \right) = -\frac{n}{2\sigma^2} σ2(2nlog(σ2))=2σ2n

  3. 第三项 − 1 2 σ 2 ∑ i = 1 n ( x i − μ ) 2 -\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 2σ21i=1n(xiμ)2

    使用 d d σ 2 ( 1 σ 2 ) = − 1 σ 4 \frac{d}{d\sigma^2} \left( \frac{1}{\sigma^2} \right) = -\frac{1}{\sigma^4} dσ2d(σ21)=σ41,我们得到:
    ∂ ∂ σ 2 ( − 1 2 σ 2 ∑ i = 1 n ( x i − μ ) 2 ) = 1 2 σ 4 ∑ i = 1 n ( x i − μ ) 2 \frac{\partial}{\partial \sigma^2} \left( - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 \right) = \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 σ2(2σ21i=1n(xiμ)2)=2σ41i=1n(xiμ)2

将各项导数结果组合

我们将对数似然函数中所有关于 σ 2 \sigma^2 σ2 的项求导结果组合起来:
∂ ℓ ∂ σ 2 = − n 2 σ 2 + 1 2 σ 4 ∑ i = 1 n ( x i − μ ) 2 \frac{\partial \ell}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 σ2=2σ2n+2σ41i=1n(xiμ)2

设置导数为 0,解出 σ 2 \sigma^2 σ2

为了找到 σ 2 \sigma^2 σ2 的极大似然估计,我们将导数设为 0:
− n 2 σ 2 + 1 2 σ 4 ∑ i = 1 n ( x i − μ ) 2 = 0 -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = 0 2σ2n+2σ41i=1n(xiμ)2=0

1. 消去常数 1 2 \frac{1}{2} 21

为了简化方程,两边同时乘以 2 消去常数:
− n σ 2 + 1 σ 4 ∑ i = 1 n ( x i − μ ) 2 = 0 -\frac{n}{\sigma^2} + \frac{1}{\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = 0 σ2n+σ41i=1n(xiμ)2=0

2. 将 n σ 2 \frac{n}{\sigma^2} σ2n 移到右边

将方程重排:
1 σ 4 ∑ i = 1 n ( x i − μ ) 2 = n σ 2 \frac{1}{\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = \frac{n}{\sigma^2} σ41i=1n(xiμ)2=σ2n

3. 乘以 σ 4 \sigma^4 σ4

为了消去 σ 4 \sigma^4 σ4,我们将方程两边乘以 σ 4 \sigma^4 σ4
∑ i = 1 n ( x i − μ ) 2 = n σ 2 \sum_{i=1}^n (x_i - \mu)^2 = n \sigma^2 i=1n(xiμ)2=nσ2

4. 解出 σ 2 \sigma^2 σ2

σ 2 \sigma^2 σ2 留在一边,解出:
σ 2 = 1 n ∑ i = 1 n ( x i − μ ) 2 \sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2 σ2=n1i=1n(xiμ)2

这个结果就是 σ 2 \sigma^2 σ2 的极大似然估计,即样本方差公式。


总结

我们通过对正态分布的对数似然函数分别对 μ \mu μ σ 2 \sigma^2 σ2 求导,得到以下结论:

  1. 均值 μ \mu μ 的极大似然估计
    μ ^ = 1 n ∑ i = 1 n x i \hat{\mu} = \frac{1}{n} \sum_{i=1}^n x_i μ^=n1i=1nxi
    即样本的均值是 μ \mu μ 的极大似然估计。

  2. 方差 σ 2 \sigma^2 σ2 的极大似然估计
    σ ^ 2 = 1 n ∑ i = 1 n ( x i − μ ^ ) 2 \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2 σ^2=n1i=1n(xiμ^)2
    即样本方差是 σ 2 \sigma^2 σ2 的极大似然估计。

相关文章:

正态分布的极大似然估计一个示例,详细展开的方程求解步骤

此示例是 什么是极大似然估计 中的一个例子,本文的目的是给出更加详细的方程求解步骤,便于数学基础不好的同学理解。 目标 假设我们有一组样本数据 x 1 , x 2 , … , x n x_1, x_2, \dots, x_n x1​,x2​,…,xn​,它们来自一个正态分布 N…...

s7-200SMART编程软件下载

1、官网: STEP 7 Micro/WIN SMART V2.2 完整版http://w2.siemens.com.cn/download/smart/STEP%207%20MicroWIN%20SMART%20V2.2.zip STEP 7 Micro/WIN SMART V2.3 完整版http://w2.siemens.com.cn/download/smart/STEP%207%20MicroWIN%20SMART%20V2.3.iso STEP 7 Mi…...

Linux驱动开发常用调试方法汇总

引言:在 Linux 驱动开发中,调试是一个至关重要的环节。开发者需要了解多种调试方法,以便能够快速定位和解决问题。 1.利用printk 描述: printk 是 Linux 内核中的一个调试输出函数,类似于用户空间中的 printf。它用于…...

将列表中的各字符串sn连接成为一个字符串s使用;将各sn间隔开os.pathsep.join()

【小白从小学Python、C、Java】 【考研初试复试毕业设计】 【Python基础AI数据分析】 将列表中的各字符串sn 连接成为一个字符串s 使用;将各sn间隔开 os.pathsep.join() [太阳]选择题 下列说法中正确的是? import os paths ["/a", "/b/c", "/d&q…...

算法题总结(八)——字符串

531、反转字符串二 给定一个字符串 s 和一个整数 k,从字符串开头算起,每计数至 2k 个字符,就反转这 2k 字符中的前 k 个字符。 如果剩余字符少于 k 个,则将剩余字符全部反转。如果剩余字符小于 2k 但大于或等于 k 个&#xff0c…...

大数据开发--1.2 Linux介绍及虚拟机网络配置

目录 一. 计算机入门知识介绍 软件和硬件的概述 硬件 软件 操作系统概述 简单介绍 常见的系统操作 学习Linux系统 二. Linux系统介绍 简单介绍 发行版介绍 常用的发行版 三. Linux系统的安装和体验 Linux系统的安装 介绍 虚拟机原理 常见的虚拟机软件 体验Li…...

2024CSP-J复赛易错点

低级错误 不开long long见祖宗写代码要有输入,别没写输入就交写完代码要在本地测试,多想写极端测试数据,或对拍注意考官说文件夹怎么建,别文件夹建错,爆0别忘写freopen或忘给freopen去注释记着把.exe文件删掉考试时不…...

pytorch 与 pytorch lightning, pytorch geometric 各个版本之间的关系

主要参考 官方的给出的意见; 1. pytorch 与 pytorch lightning 各个版本之间的关系 lightning 主要可以 适配多个版本的 torch; https://lightning.ai/docs/pytorch/latest/versioning.html#compatibility-matrix; 2. pytorch 与 pytorch geometric 各…...

Spring Boot项目的创建与使用

1.通过IDE创建Spring Boot项目 2.目录结构 3.新建TestController控制器 Controller public class TestController {RequestMapping("/test")public ModelAndView test(RequestParam(name "name", defaultValue "刘德华") String name){ModelA…...

pytorch常用函数view、sum、sequeeze、cat和chunk

文章目录 view()函数sequeeze和unsequeezecat和chunk函数sum函数view()函数 view()相当于reshape、resize,重新调整Tensor的形状。 指定调整形状之后的维度import torch re = torch.tensor([1, 2, 3, 4, 5...

【STM32开发之寄存器版】(四)-独立看门狗IWDG

一 、前言 独立看门狗简介: STM32F103ZET6内置两个看门狗,提供了更高的安全性、时间的精确性和使用的灵活性。两个看门狗设备(独立看门狗和窗口看门狗)可用来检测和解决由软件错误引起的故障。 独立看门狗主要性能: 自由运行的递减计数器时钟…...

【S32K3 RTD MCAL 篇1】 K344 KEY 控制 EMIOS PWM

【S32K3 RTD MCAL 篇1】 K344 KEY 控制 EMIOS PWM 一,文档简介二, 功能实现2.1 软硬件平台2.2 软件控制流程2.3 资源分配概览2.4 EB 配置2.4.1 Dio module2.4.2 Icu module2.4.4 Mcu module2.4.5 Platform module2.4.6 Port module2.4.7 Pwm module 2.5 …...

华为OD机试真题---绘图机器(计算面积)

题目描述 绘图机器的绘图笔初始位置在原点(0,0),机器启动后按照以下规则绘制直线: 尝试沿着横线坐标正向绘制直线直到给定的终点E。期间可以通过指令在纵坐标轴方向进行偏移,offsetY为正数表示正向偏移,为负数表示负向偏移。 给…...

HarmonyOs 查看官方文档使用弹窗

1. 学会查看官方文档 HarmonyOS跟上网上的视频学习一段时间后,基本也就入门了,但是有一些操作网上没有找到合适教学的视频,这时,大家就需要养成参考官方文档的习惯了,因为官方的开发文档是我们学习深度任何一门语言或…...

uniapp+Android智慧居家养老服务平台 0fjae微信小程序

目录 项目介绍支持以下技术栈:具体实现截图HBuilderXuniappmysql数据库与主流编程语言java类核心代码部分展示登录的业务流程的顺序是:数据库设计性能分析操作可行性技术可行性系统安全性数据完整性软件测试详细视频演示源码获取方式 项目介绍 老年人 登…...

在一台电脑上实现网页与exe程序使用udp通信

要在同一台电脑上实现网页(前端)与 EXE 程序(后端)通过 UDP 通信,可以使用以下步骤。前端可以使用 JavaScript 通过 WebSocket 与自定义服务器进行通信,该服务器通过 UDP 发送和接收数据,再与 E…...

基于Java的GeoTools对Shapefile文件属性信息深度解析

目录 前言 一、Shapefile的属性列表信息 1、属性表格信息 2、属性表格包含的要素 二、GeoTools对属性表格的解析 1、常规解析方法 2、基于dbf文件的属性信息读取 三、总结 前言 ESRI Shapefile(shp),或简称shapefile,是美…...

付费计量系统实体和接口(1)

13.System entities and interfaces 系统实体和接口 See also Clause 4 for a discussion on general concepts and Clause 5 for generic entity model. 参见条目 4 讨论总体概念、条目 5 通用实体模型。 An entity specification should specify the embodied functions and …...

网易博客旧文----bacnet学习系列之四----VTS的初步使用

bacnet学习系列之四----VTS的初步使用 2014-02-07 13:32:28| 分类: BACnet | 标签: |举报 |字号大中小 订阅 这是一个测试用 的工具,而且是开放源码的,下载地址为:VTS下载官网 也可以从我的网盘下载 VTS下载 我用的是…...

SpringIoC容器的初识

一、SpringIoC容器的介绍 Spring IoC 容器,负责实例化、配置和组装 bean(组件)。容器通过读取配置元数据来获取有关要实例化、配置和组装组件的指令。配置元数据以 XML、Java 注解或 Java 代码形式表现。它允许表达组成应用程序的组件以及这…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误

HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 ​ 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...

C++:std::is_convertible

C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

Oracle查询表空间大小

1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日&#xff0c;中天合创屋面分布式光伏发电项目顺利并网发电&#xff0c;该项目位于内蒙古自治区鄂尔多斯市乌审旗&#xff0c;项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站&#xff0c;总装机容量为9.96MWp。 项目投运后&#xff0c;每年可节约标煤3670…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...