当前位置: 首页 > news >正文

正态分布的极大似然估计一个示例,详细展开的方程求解步骤

此示例是 什么是极大似然估计 中的一个例子,本文的目的是给出更加详细的方程求解步骤,便于数学基础不好的同学理解。

目标

假设我们有一组样本数据 x 1 , x 2 , … , x n x_1, x_2, \dots, x_n x1,x2,,xn,它们来自一个正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2),我们的目标是通过极大似然估计(MLE)来找到正态分布的两个参数 μ \mu μ σ 2 \sigma^2 σ2

对数似然函数

正态分布的概率密度函数为:
f ( x i ∣ μ , σ 2 ) = 1 2 π σ 2 exp ⁡ ( − ( x i − μ ) 2 2 σ 2 ) f(x_i | \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left( -\frac{(x_i - \mu)^2}{2\sigma^2} \right) f(xiμ,σ2)=2πσ2 1exp(2σ2(xiμ)2)

给定样本 x 1 , x 2 , … , x n x_1, x_2, \dots, x_n x1,x2,,xn,样本的似然函数为:
L ( μ , σ 2 ) = ∏ i = 1 n 1 2 π σ 2 exp ⁡ ( − ( x i − μ ) 2 2 σ 2 ) L(\mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left( -\frac{(x_i - \mu)^2}{2\sigma^2} \right) L(μ,σ2)=i=1n2πσ2 1exp(2σ2(xiμ)2)

对似然函数取对数,得到对数似然函数:
ℓ ( μ , σ 2 ) = log ⁡ L ( μ , σ 2 ) = ∑ i = 1 n log ⁡ ( 1 2 π σ 2 exp ⁡ ( − ( x i − μ ) 2 2 σ 2 ) ) \ell(\mu, \sigma^2) = \log L(\mu, \sigma^2) = \sum_{i=1}^n \log \left( \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left( -\frac{(x_i - \mu)^2}{2\sigma^2} \right) \right) (μ,σ2)=logL(μ,σ2)=i=1nlog(2πσ2 1exp(2σ2(xiμ)2))

我们可以将对数似然函数分解为三部分:
ℓ ( μ , σ 2 ) = − n 2 log ⁡ ( 2 π ) − n 2 log ⁡ ( σ 2 ) − 1 2 σ 2 ∑ i = 1 n ( x i − μ ) 2 \ell(\mu, \sigma^2) = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 (μ,σ2)=2nlog(2π)2nlog(σ2)2σ21i=1n(xiμ)2

现在我们分别对 μ \mu μ σ 2 \sigma^2 σ2 求导。


一、对 μ \mu μ 求导

首先,对 μ \mu μ 求导,方程中的 μ \mu μ 仅出现在最后一项 ∑ i = 1 n ( x i − μ ) 2 \sum_{i=1}^n (x_i - \mu)^2 i=1n(xiμ)2 中,因此我们只对这一项求导:
ℓ ( μ , σ 2 ) = − 1 2 σ 2 ∑ i = 1 n ( x i − μ ) 2 \ell(\mu, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 (μ,σ2)=2σ21i=1n(xiμ)2

μ \mu μ 求导:
∂ ℓ ∂ μ = − 1 2 σ 2 ⋅ 2 ∑ i = 1 n ( x i − μ ) ( − 1 ) \frac{\partial \ell}{\partial \mu} = -\frac{1}{2\sigma^2} \cdot 2 \sum_{i=1}^n (x_i - \mu) (-1) μ=2σ212i=1n(xiμ)(1)

简化后为:
∂ ℓ ∂ μ = 1 σ 2 ∑ i = 1 n ( x i − μ ) \frac{\partial \ell}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) μ=σ21i=1n(xiμ)

将这个导数设为 0,来找到 μ \mu μ 的极大似然估计:
1 σ 2 ∑ i = 1 n ( x i − μ ) = 0 \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) = 0 σ21i=1n(xiμ)=0

因为 σ 2 ≠ 0 \sigma^2 \neq 0 σ2=0,我们可以省略 1 σ 2 \frac{1}{\sigma^2} σ21,得到:
∑ i = 1 n ( x i − μ ) = 0 \sum_{i=1}^n (x_i - \mu) = 0 i=1n(xiμ)=0

简化为:
n μ = ∑ i = 1 n x i n\mu = \sum_{i=1}^n x_i nμ=i=1nxi

因此, μ \mu μ 的极大似然估计为:
μ ^ = 1 n ∑ i = 1 n x i \hat{\mu} = \frac{1}{n} \sum_{i=1}^n x_i μ^=n1i=1nxi

这意味着,样本的均值是 μ \mu μ 的极大似然估计。


二、对 σ 2 \sigma^2 σ2 求导

接下来我们对 σ 2 \sigma^2 σ2 求导。对数似然函数中关于 σ 2 \sigma^2 σ2 的部分是:
ℓ ( μ , σ 2 ) = − n 2 log ⁡ ( 2 π ) − n 2 log ⁡ ( σ 2 ) − 1 2 σ 2 ∑ i = 1 n ( x i − μ ) 2 \ell(\mu, \sigma^2) = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 (μ,σ2)=2nlog(2π)2nlog(σ2)2σ21i=1n(xiμ)2

我们对 σ 2 \sigma^2 σ2 求导,逐项进行求导:

  1. 第一项 − n 2 log ⁡ ( 2 π ) -\frac{n}{2} \log(2\pi) 2nlog(2π) 是常数,对 σ 2 \sigma^2 σ2 求导为 0。

  2. 第二项 − n 2 log ⁡ ( σ 2 ) -\frac{n}{2} \log(\sigma^2) 2nlog(σ2)

    使用对数函数的求导公式 d d σ 2 ( log ⁡ σ 2 ) = 1 σ 2 \frac{d}{d\sigma^2} (\log \sigma^2) = \frac{1}{\sigma^2} dσ2d(logσ2)=σ21,我们有:
    ∂ ∂ σ 2 ( − n 2 log ⁡ ( σ 2 ) ) = − n 2 σ 2 \frac{\partial}{\partial \sigma^2} \left( -\frac{n}{2} \log(\sigma^2) \right) = -\frac{n}{2\sigma^2} σ2(2nlog(σ2))=2σ2n

  3. 第三项 − 1 2 σ 2 ∑ i = 1 n ( x i − μ ) 2 -\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 2σ21i=1n(xiμ)2

    使用 d d σ 2 ( 1 σ 2 ) = − 1 σ 4 \frac{d}{d\sigma^2} \left( \frac{1}{\sigma^2} \right) = -\frac{1}{\sigma^4} dσ2d(σ21)=σ41,我们得到:
    ∂ ∂ σ 2 ( − 1 2 σ 2 ∑ i = 1 n ( x i − μ ) 2 ) = 1 2 σ 4 ∑ i = 1 n ( x i − μ ) 2 \frac{\partial}{\partial \sigma^2} \left( - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 \right) = \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 σ2(2σ21i=1n(xiμ)2)=2σ41i=1n(xiμ)2

将各项导数结果组合

我们将对数似然函数中所有关于 σ 2 \sigma^2 σ2 的项求导结果组合起来:
∂ ℓ ∂ σ 2 = − n 2 σ 2 + 1 2 σ 4 ∑ i = 1 n ( x i − μ ) 2 \frac{\partial \ell}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 σ2=2σ2n+2σ41i=1n(xiμ)2

设置导数为 0,解出 σ 2 \sigma^2 σ2

为了找到 σ 2 \sigma^2 σ2 的极大似然估计,我们将导数设为 0:
− n 2 σ 2 + 1 2 σ 4 ∑ i = 1 n ( x i − μ ) 2 = 0 -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = 0 2σ2n+2σ41i=1n(xiμ)2=0

1. 消去常数 1 2 \frac{1}{2} 21

为了简化方程,两边同时乘以 2 消去常数:
− n σ 2 + 1 σ 4 ∑ i = 1 n ( x i − μ ) 2 = 0 -\frac{n}{\sigma^2} + \frac{1}{\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = 0 σ2n+σ41i=1n(xiμ)2=0

2. 将 n σ 2 \frac{n}{\sigma^2} σ2n 移到右边

将方程重排:
1 σ 4 ∑ i = 1 n ( x i − μ ) 2 = n σ 2 \frac{1}{\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = \frac{n}{\sigma^2} σ41i=1n(xiμ)2=σ2n

3. 乘以 σ 4 \sigma^4 σ4

为了消去 σ 4 \sigma^4 σ4,我们将方程两边乘以 σ 4 \sigma^4 σ4
∑ i = 1 n ( x i − μ ) 2 = n σ 2 \sum_{i=1}^n (x_i - \mu)^2 = n \sigma^2 i=1n(xiμ)2=nσ2

4. 解出 σ 2 \sigma^2 σ2

σ 2 \sigma^2 σ2 留在一边,解出:
σ 2 = 1 n ∑ i = 1 n ( x i − μ ) 2 \sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2 σ2=n1i=1n(xiμ)2

这个结果就是 σ 2 \sigma^2 σ2 的极大似然估计,即样本方差公式。


总结

我们通过对正态分布的对数似然函数分别对 μ \mu μ σ 2 \sigma^2 σ2 求导,得到以下结论:

  1. 均值 μ \mu μ 的极大似然估计
    μ ^ = 1 n ∑ i = 1 n x i \hat{\mu} = \frac{1}{n} \sum_{i=1}^n x_i μ^=n1i=1nxi
    即样本的均值是 μ \mu μ 的极大似然估计。

  2. 方差 σ 2 \sigma^2 σ2 的极大似然估计
    σ ^ 2 = 1 n ∑ i = 1 n ( x i − μ ^ ) 2 \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2 σ^2=n1i=1n(xiμ^)2
    即样本方差是 σ 2 \sigma^2 σ2 的极大似然估计。

相关文章:

正态分布的极大似然估计一个示例,详细展开的方程求解步骤

此示例是 什么是极大似然估计 中的一个例子,本文的目的是给出更加详细的方程求解步骤,便于数学基础不好的同学理解。 目标 假设我们有一组样本数据 x 1 , x 2 , … , x n x_1, x_2, \dots, x_n x1​,x2​,…,xn​,它们来自一个正态分布 N…...

s7-200SMART编程软件下载

1、官网: STEP 7 Micro/WIN SMART V2.2 完整版http://w2.siemens.com.cn/download/smart/STEP%207%20MicroWIN%20SMART%20V2.2.zip STEP 7 Micro/WIN SMART V2.3 完整版http://w2.siemens.com.cn/download/smart/STEP%207%20MicroWIN%20SMART%20V2.3.iso STEP 7 Mi…...

Linux驱动开发常用调试方法汇总

引言:在 Linux 驱动开发中,调试是一个至关重要的环节。开发者需要了解多种调试方法,以便能够快速定位和解决问题。 1.利用printk 描述: printk 是 Linux 内核中的一个调试输出函数,类似于用户空间中的 printf。它用于…...

将列表中的各字符串sn连接成为一个字符串s使用;将各sn间隔开os.pathsep.join()

【小白从小学Python、C、Java】 【考研初试复试毕业设计】 【Python基础AI数据分析】 将列表中的各字符串sn 连接成为一个字符串s 使用;将各sn间隔开 os.pathsep.join() [太阳]选择题 下列说法中正确的是? import os paths ["/a", "/b/c", "/d&q…...

算法题总结(八)——字符串

531、反转字符串二 给定一个字符串 s 和一个整数 k,从字符串开头算起,每计数至 2k 个字符,就反转这 2k 字符中的前 k 个字符。 如果剩余字符少于 k 个,则将剩余字符全部反转。如果剩余字符小于 2k 但大于或等于 k 个&#xff0c…...

大数据开发--1.2 Linux介绍及虚拟机网络配置

目录 一. 计算机入门知识介绍 软件和硬件的概述 硬件 软件 操作系统概述 简单介绍 常见的系统操作 学习Linux系统 二. Linux系统介绍 简单介绍 发行版介绍 常用的发行版 三. Linux系统的安装和体验 Linux系统的安装 介绍 虚拟机原理 常见的虚拟机软件 体验Li…...

2024CSP-J复赛易错点

低级错误 不开long long见祖宗写代码要有输入,别没写输入就交写完代码要在本地测试,多想写极端测试数据,或对拍注意考官说文件夹怎么建,别文件夹建错,爆0别忘写freopen或忘给freopen去注释记着把.exe文件删掉考试时不…...

pytorch 与 pytorch lightning, pytorch geometric 各个版本之间的关系

主要参考 官方的给出的意见; 1. pytorch 与 pytorch lightning 各个版本之间的关系 lightning 主要可以 适配多个版本的 torch; https://lightning.ai/docs/pytorch/latest/versioning.html#compatibility-matrix; 2. pytorch 与 pytorch geometric 各…...

Spring Boot项目的创建与使用

1.通过IDE创建Spring Boot项目 2.目录结构 3.新建TestController控制器 Controller public class TestController {RequestMapping("/test")public ModelAndView test(RequestParam(name "name", defaultValue "刘德华") String name){ModelA…...

pytorch常用函数view、sum、sequeeze、cat和chunk

文章目录 view()函数sequeeze和unsequeezecat和chunk函数sum函数view()函数 view()相当于reshape、resize,重新调整Tensor的形状。 指定调整形状之后的维度import torch re = torch.tensor([1, 2, 3, 4, 5...

【STM32开发之寄存器版】(四)-独立看门狗IWDG

一 、前言 独立看门狗简介: STM32F103ZET6内置两个看门狗,提供了更高的安全性、时间的精确性和使用的灵活性。两个看门狗设备(独立看门狗和窗口看门狗)可用来检测和解决由软件错误引起的故障。 独立看门狗主要性能: 自由运行的递减计数器时钟…...

【S32K3 RTD MCAL 篇1】 K344 KEY 控制 EMIOS PWM

【S32K3 RTD MCAL 篇1】 K344 KEY 控制 EMIOS PWM 一,文档简介二, 功能实现2.1 软硬件平台2.2 软件控制流程2.3 资源分配概览2.4 EB 配置2.4.1 Dio module2.4.2 Icu module2.4.4 Mcu module2.4.5 Platform module2.4.6 Port module2.4.7 Pwm module 2.5 …...

华为OD机试真题---绘图机器(计算面积)

题目描述 绘图机器的绘图笔初始位置在原点(0,0),机器启动后按照以下规则绘制直线: 尝试沿着横线坐标正向绘制直线直到给定的终点E。期间可以通过指令在纵坐标轴方向进行偏移,offsetY为正数表示正向偏移,为负数表示负向偏移。 给…...

HarmonyOs 查看官方文档使用弹窗

1. 学会查看官方文档 HarmonyOS跟上网上的视频学习一段时间后,基本也就入门了,但是有一些操作网上没有找到合适教学的视频,这时,大家就需要养成参考官方文档的习惯了,因为官方的开发文档是我们学习深度任何一门语言或…...

uniapp+Android智慧居家养老服务平台 0fjae微信小程序

目录 项目介绍支持以下技术栈:具体实现截图HBuilderXuniappmysql数据库与主流编程语言java类核心代码部分展示登录的业务流程的顺序是:数据库设计性能分析操作可行性技术可行性系统安全性数据完整性软件测试详细视频演示源码获取方式 项目介绍 老年人 登…...

在一台电脑上实现网页与exe程序使用udp通信

要在同一台电脑上实现网页(前端)与 EXE 程序(后端)通过 UDP 通信,可以使用以下步骤。前端可以使用 JavaScript 通过 WebSocket 与自定义服务器进行通信,该服务器通过 UDP 发送和接收数据,再与 E…...

基于Java的GeoTools对Shapefile文件属性信息深度解析

目录 前言 一、Shapefile的属性列表信息 1、属性表格信息 2、属性表格包含的要素 二、GeoTools对属性表格的解析 1、常规解析方法 2、基于dbf文件的属性信息读取 三、总结 前言 ESRI Shapefile(shp),或简称shapefile,是美…...

付费计量系统实体和接口(1)

13.System entities and interfaces 系统实体和接口 See also Clause 4 for a discussion on general concepts and Clause 5 for generic entity model. 参见条目 4 讨论总体概念、条目 5 通用实体模型。 An entity specification should specify the embodied functions and …...

网易博客旧文----bacnet学习系列之四----VTS的初步使用

bacnet学习系列之四----VTS的初步使用 2014-02-07 13:32:28| 分类: BACnet | 标签: |举报 |字号大中小 订阅 这是一个测试用 的工具,而且是开放源码的,下载地址为:VTS下载官网 也可以从我的网盘下载 VTS下载 我用的是…...

SpringIoC容器的初识

一、SpringIoC容器的介绍 Spring IoC 容器,负责实例化、配置和组装 bean(组件)。容器通过读取配置元数据来获取有关要实例化、配置和组装组件的指令。配置元数据以 XML、Java 注解或 Java 代码形式表现。它允许表达组成应用程序的组件以及这…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

爬虫基础学习day2

# 爬虫设计领域 工商&#xff1a;企查查、天眼查短视频&#xff1a;抖音、快手、西瓜 ---> 飞瓜电商&#xff1a;京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空&#xff1a;抓取所有航空公司价格 ---> 去哪儿自媒体&#xff1a;采集自媒体数据进…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述&#xff1a;海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而&#xff0c;目前该领域仍面临一个挑战&#xff0c;即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

快刀集(1): 一刀斩断视频片头广告

一刀流&#xff1a;用一个简单脚本&#xff0c;秒杀视频片头广告&#xff0c;还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农&#xff0c;平时写代码之余看看电影、补补片&#xff0c;是再正常不过的事。 电影嘛&#xff0c;要沉浸&#xff0c;…...

C# 表达式和运算符(求值顺序)

求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如&#xff0c;已知表达式3*52&#xff0c;依照子表达式的求值顺序&#xff0c;有两种可能的结果&#xff0c;如图9-3所示。 如果乘法先执行&#xff0c;结果是17。如果5…...

NPOI操作EXCEL文件 ——CAD C# 二次开发

缺点:dll.版本容易加载错误。CAD加载插件时&#xff0c;没有加载所有类库。插件运行过程中用到某个类库&#xff0c;会从CAD的安装目录找&#xff0c;找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库&#xff0c;就用插件程序加载进…...

鸿蒙(HarmonyOS5)实现跳一跳小游戏

下面我将介绍如何使用鸿蒙的ArkUI框架&#xff0c;实现一个简单的跳一跳小游戏。 1. 项目结构 src/main/ets/ ├── MainAbility │ ├── pages │ │ ├── Index.ets // 主页面 │ │ └── GamePage.ets // 游戏页面 │ └── model │ …...

密码学基础——SM4算法

博客主页&#xff1a;christine-rr-CSDN博客 ​​​​专栏主页&#xff1a;密码学 &#x1f4cc; 【今日更新】&#x1f4cc; 对称密码算法——SM4 目录 一、国密SM系列算法概述 二、SM4算法 2.1算法背景 2.2算法特点 2.3 基本部件 2.3.1 S盒 2.3.2 非线性变换 ​编辑…...

TCP/IP 网络编程 | 服务端 客户端的封装

设计模式 文章目录 设计模式一、socket.h 接口&#xff08;interface&#xff09;二、socket.cpp 实现&#xff08;implementation&#xff09;三、server.cpp 使用封装&#xff08;main 函数&#xff09;四、client.cpp 使用封装&#xff08;main 函数&#xff09;五、退出方法…...

GAN模式奔溃的探讨论文综述(一)

简介 简介:今天带来一篇关于GAN的,对于模式奔溃的一个探讨的一个问题,帮助大家更好的解决训练中遇到的一个难题。 论文题目:An in-depth review and analysis of mode collapse in GAN 期刊:Machine Learning 链接:...