当前位置: 首页 > news >正文

mit6824-01-MapReduce详解

文章目录

  • MapReduce简述
  • 编程模型
  • 执行流程
    • 执行流程
    • 排序保证
    • Combiner函数
    • Master数据结构
  • 容错性
    • Worker故障
    • Master故障
  • 性能提升
    • 定制分区函数
    • 局部性
    • 执行缓慢的worker(slow workers)
  • 常见问题总结回顾
  • 参考链接

MapReduce简述

MapReduce是一个在多台机器上并行计算大规模数据的软件架构。主要通过两个操作来实现:Map 和 Reduce:用于大规模数据集(大于1TB)的并行运算。

概念"Map(映射)“和"Reduce(归约)”,是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。它极大地方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统上。 当前的软件实现是指定一个Map(映射)函数,用来把一组键值对映射成一组新的键值对,指定并发的Reduce(归约)函数,用来保证所有映射的键值对中的每一个共享相同的键组。

编程模型

计算采用一组输入 K/V 对,并产生一组输出 K/V 对。MapReduce 库将计算表示为由用户编写的两个函数:

  1. map():根据输入生成一组中间 K/V 对。 MapReduce 库将所有具有相同 Key ki的 K/V 对传递给 Reduce 函数;reduce():
  2. 将 ki对应的所有值合并成 Value Set,并能通过迭代器访问;

map-reduce经典举例即统计字母出现的次数,多个进程各自通过map函数统计获取到的数据片段的字母的出现次数;后续再通过reduce函数,汇总聚合map阶段下每个进程对各自负责的数据片段统计的字母出现次数。伪代码如下所示:

map(String key, String Value):// key: document name// value: document contentsfor each word w in value:EmitIntermediate(w, "1");reduce(String key, Iterator values):// key: a word// value: a list of countsint result = 0;for each v in values:result += ParseInt(v);Emit(AsString(result));// map 函数发出每个单词及其出现次数。 reduce 函数统计特定单词发出的所有次数。

执行流程

执行流程

MapReduce操作总执行流程如下:
在这里插入图片描述

  • Master进程,被称为coordinator协调器,负责orchestrate编排wokers,把map jobs分配给它们
  • reduce、map被称为task任务
  1. MapReduce 库首先将输入文件 split 成 M 块,然后,它会在集群上启动该程序的多个副本;
  2. 其中一个副本是 Master(在 lab1 中称为 Coordinator),其余的是由 Master 分配工作的 Worker。有 M 个 map 任务和 R 个 reduce 任务要分配。 Master 为每个空闲的 Worker 分配一个任务;
  3. map Worker 从输入数据中解析出 K/V 对,并将每一对传递给 map 函数,生成的中间 K/V 对并缓存在内存中;
  4. 缓冲的 K/V 对定期被写入本地磁盘,由分区函数划分为 R 个区域。Master 获取这些缓冲对的位置并负责将这些位置转发给 reduce Worker;
  5. 当 Master 通知 reduce Worker 这些位置时,它使用 RPC 从 map Worker 的本地磁盘读取缓冲数据。当 reduce Worker 读取所有中间数据时,它会根据中间键对其进行排序,以便将所有出现的相同键组合在一起;
  6. reduce Worker 迭代排序的中间数据,对于遇到的每个唯一中间键,它将键和相应的中间值集传递给用户的 reduce 函数。 reduce 函数输出 append 到对应分区的最终文件中;
  7. 当所有的 map 任务和 reduce 任务都完成后,Master 唤醒用户程序,从 MapReduce 调用中返回;

排序保证

MapReduce 保证在给定的分区内,中间 K/V 对以 Key 递增顺序进行排列。从而保证每个分区的输出文件也是有序的——这在输出文件需要支持按键随机访问查找时很有用,同时可以对不同文件使用归并排序。具体实现时机:

Map Worker 中最后进行一次排序。

Combiner函数

在某些情况下,Map 函数产生的中间 key 值的重复数据会占很大的比重(例如词频统计,将产生成千上万的 <the, 1> 记录)。用户可以自定义一个可选的 Combiner 函数,Combiner 函数首先在本地将这些记录进行一次合并,然后将合并的结果再通过网络发送出去。
在这里插入图片描述
Combiner 函数的代码通常和 Reduce 函数的代码相同,启动这个功能的好处是可以减少通过网络发送到 Reduce 函数的数据量。

Master数据结构

Master 存储所有任务的状态( idle 、 in-progress 或 completed )和分配给所有工作机器执行的任务,以及由 map 任务生成的 R 个中间文件区域的位置和大小。当 map 任务完成时,对此位置和大小信息的更新被递增地推送给 reduce Worker。

容错性

Worker故障

Master 周期性地 ping 每个 Worker,如果 Worker 超时未回应,则将其标记为 Failed。
Worker 故障容错遵循以下原则:

  • map 任务被 Worker 完成后将重置为 idle 状态,以便调度给其他 Worker;
  • Failed Worker 未完成的任何任务将重置为 idle 状态;
  • Failed Worker 已完成的 map 任务将重新执行,因为它们的输出存储在故障机器的本地磁盘上,无法访问;
  • Failed Worker 已完成的 reduce 任务无需重新执行,因为它们的输出存储在全局文件系统中;
  • 当一个 map 任务因 WorkerA 失败转而由 WorkerB 执行,所有 reduce Worker 会收到重新执行的通知,任何尚未从 Worker A 读取数据的 reduce 任务将从 Worker B 读取数据;

Master故障

对于Master故障,我查到的资料显示:

Master 故障:中止整个 MapReduce 运算,重新执行。一般很少出现 Master 故障。

Google当初设计MapReduce时设计协调器不允许失败。如果协调器真的失败了,整个job(包含具体的多个map、reduce步骤task)需要重新运行。在这篇论文中,没有谈论到协调器失败后他们的应对方式。

(协调器不允许失败)这使得容错性很难做得更高,因为它维护一些工作状态(每个map、reduce函数执行的状态),在论文的库中,协调器不能失败。

后面会谈论一些技术手段,可以实现协调器容错,他们可以这么做却不打算,原因是他们认为比起协调器,运行map函数的上千个机器中崩溃一台的概率更高(也就是收益和成本不成正比,所以暂时没有实现协调器容错的打算)。

性能提升

定制分区函数

MapReduce 库的用户可以自定义分区函数来应对不同应用场景。例如,使用 hash(Hostname(urlkey)) % R 作为分区函数可以使来自同一主机的所有 URL 最终出现在同一个输出文件中。

局部性

就近原则:
Google发表该 paper 时,网络带宽是一个相当匮乏的资源。Master 在调度 Map 任务时会考虑输入文件的位置信息,尽量将一个 Map 任务调度在包含相关输入数据拷贝的机器上执行;如果找不到,Master 将尝试在保存输入数据拷贝的附近的机器上执行 Map 任务。

需要注意的是,新的讲座视频提到,随着后来 Google 的基础设施的扩展和升级,他们对这种存储位置优化的依赖程度降低了。

执行缓慢的worker(slow workers)

MapReduce操作所用总时间受短板效应影响:
比如GFS也在同一台机器上运行占用大量的机器周期或带宽,或硬件本身问题,导致worker执行map/reduce很慢。慢的worker被称为straggler,当剩下几个map/reduce任务没有执行时,协调者会另外分配相同的map/reduce任务到其他闲置worker上运行,达到backup task(备份任务)的效果(因为函数式,map/reduce以相同输入执行最后会产生相同输出,所以执行多少次都不会有问题)。

  • 通过backup task,性能不会受限于最慢的几个worker,因为有更快的worker会领先它们完成task(map或reduce)。这是应对straggler的普遍做法,通过replicate tasks复制任务,获取更快完成task的输出结果,处理了tail latency尾部延迟问题。

常见问题总结回顾

  • 在远程读取进程中,文件是否会传输到reducer?

会。map函数产生的中间结果存放在执行map函数的worker机器的磁盘上,而之后解调器分配文件给reducer执行reduce函数时,中间结果数据需要通过网络传输到reducer机器上。这里其实很少有网络通信,因为一个worker在一台机器上,而每台机器同时运行着worker进程和GFS进程。worker运行map产生中间结果存储在本地,而之后协调器给worker分配文件以执行reduce函数时,才需要通过网络获取中间结果数据,最后reduce处理完在写入GFS,写入GFS的动作也往往需要通络传输。

  • 协调器是否负责对数据进行分区,并将数据分发到每个worker或机器上?

不是的。mapreduce运行用户程序,这些输入数据在GFS中。(也就是说协调器告知worker从GFS取哪些数据进行map,后续协调器又告知worker从哪些worker机器上获取中间结果数据进行reduce,最后又统一写入到GFS中)

  • 排序是如何工作的?比如谁负责排序,如何排序?

中间结果数据传递到reduce函数之前,mapreduce库进行一些排序。比如所有的中间结果键a、b、c到一个worker。比如(a,1) (b,1) (c,1) (a,1) 数据,被排序成(a,1) (a,1) (b,1) (c,1) 后才传递给reduce函数。

  • map是否会被执行两次?
  • 如果coordinator没有收到worker反馈task任务完成,那么会coordinator重新分配worker要求执行task(可能分配到同一个worker,重点是task会被重新执行)
  • 或许没反馈task执行done完成的worker是遇到网络分区等问题,并没有宕机,或者协调者不能与worker达成网络通信,但实际上worker仍然在运行map任务,它正在产生中间结果。

同一个map可以被运行两次。 被执行两次是能够接受的(幂等性问题),正是map和reduce属于函数式(functional)的原因之一。如果map/reduce是一个funcitonal program,那么使用相同输入运行时,产生的输出会是相同的(也就是保证幂等)。

  • reduce能够被执行两次吗?

reduce和map出于相同的原因,从容错的角度上看,执行reduce函数和map函数并没有太大区别。需要注意的是,这时候可能有两个reducer同时有相同的输出文件需要写入GFS,它们首先在全局文件系统GFS中产生一个中间文件,然后进行atomic rename原子重命名,将文件重命名为实际的最终名称。因为在GFS中执行的重命名是原子操作,最后哪个reducer胜出并不重要,因为reduce是函数式的,它们最终输出的数据都是一样的。

  • 一台机器应该可以执行多个map任务,如果它分配10个map任务,而在执行第7个map任务时失败了,master得知后,会安排将这7个已完成的map任务分布式地重新执行,可能分散到不同的map机器上,对吗?

是的。但是通常一台机器只运行一个map函数或一个reduce函数,而不是多个。

  • 在worker完成map任务后,它是否会直接将文件写入其他机器可见的位置,或者只是将文件保存到自己的文件系统中?

map函数总是在本地磁盘产生结果,所以中间结果文件只会在本地文件系统中。

  • 即使一次只做一个map任务,但是如果执行了多次map任务后,如果机器突然崩溃,那么会丢失之前负责的所有map任务所产生的中间结果文件,对吗?

中间结果文件放在文件系统中。所以当机器恢复时,中间结果文件还在那里,因为文件数据是被持久化保存的,而不是只会存在于内存中(换句话说,这里依赖了操作系统的文件系统本身的容错性)。并且map或reduce会直接访问包含intermediate results中间结果的机器。

参考链接

链接一
链接二
链接三

相关文章:

mit6824-01-MapReduce详解

文章目录 MapReduce简述编程模型执行流程执行流程排序保证Combiner函数Master数据结构 容错性Worker故障Master故障 性能提升定制分区函数局部性执行缓慢的worker(slow workers) 常见问题总结回顾参考链接 MapReduce简述 MapReduce是一个在多台机器上并行计算大规模数据的软件架…...

在Docker中运行微服务注册中心Eureka

1、Docker简介&#xff1a; 作为开发者&#xff0c;经常遇到一个头大的问题&#xff1a;“在我机器上能运行”。而将SpringCloud微服务运行在Docker容器中&#xff0c;避免了因环境差异带来的兼容性问题&#xff0c;能够有效的解决此类问题。 通过Docker&#xff0c;开发者可…...

白话进程>线程>协程

文章目录 概述进程线程协程区别与联系 举个栗子进程例子线程例子协程例子区别与联系的具体体现 代码示例进程例子线程例子协程&#xff08;Goroutine&#xff09;例子 概述 进程、线程和协程是计算机科学中的基本概念&#xff0c;它们在操作系统和并发编程中扮演着重要角色。以…...

论文阅读:Attention is All you Need

Abstract 贡献&#xff1a; 提出了Transformer&#xff0c;完全基于注意力机制&#xff0c;摒弃了循环和卷积网络。 结果&#xff1a; 本模型在质量上优于现有模型&#xff0c;同时具有更高的并行性&#xff0c;并且显著减少了训练时间。 1. Introduction long short-term …...

【Linux 】文件描述符fd、重定向、缓冲区(超详解)

目录 ​编辑 系统接口进行文件访问 open 接口介绍 文件描述符fd 重定向 缓冲区 1、缓冲区是什么&#xff1f; 2、为什么要有缓冲区&#xff1f; 3、怎么办&#xff1f; 我们先来复习一下&#xff0c;c语言对文件的操作&#xff1a; C默认会打开三个输入输出流&#xf…...

Unity WebGL使用nginx作反向代理处理跨域,一些跨域的错误处理(添加了反向代理的配置依旧不能跨域)

反向代理与跨域描述 什么是跨域&#xff1f; 跨域&#xff08;Cross-Origin Resource Sharing, CORS&#xff09;是指在浏览器中&#xff0c;当一个网页的脚本试图从一个域名&#xff08;协议、域名、端口&#xff09;请求另一个域名的资源时&#xff0c;浏览器会阻止这种请求…...

视频转文字免费的软件有哪些?6款工具一键把视频转成文字!又快又方便!

视频转文字免费的软件有哪些&#xff1f;在视频制作剪辑过程中&#xff0c;我们经常进行视频语音识别成字幕&#xff0c;帮助我们更好地呈现视频内容的观看和宣传&#xff0c;市场上有许多免费的视频转文字软件&#xff0c;可以快速导入视频&#xff0c;进行视频内音频的文字转…...

解决DHCP服务异常导致设备无法获取IP地址的方法

DHCP在网络环境中会自动为网络中的设备分配IP地址和其他关键网络参数&#xff0c;可以简化网络配置过程。但是&#xff0c;如果DHCP服务出现异常时&#xff0c;设备可能无法正常获取IP地址&#xff0c;会影响到网络通信。 本文讲述一些办法可以有效解决DHCP服务异常导致设备无法…...

Python机器学习模型的部署与维护:版本管理、监控与更新策略

&#x1f680; Python机器学习模型的部署与维护&#xff1a;版本管理、监控与更新策略 目录 &#x1f4bc; 模型版本管理 使用DVC进行数据和模型的版本控制&#xff0c;确保可复现性 &#x1f50d; 监控与评估 部署后的模型性能监控&#xff0c;使用Prometheus和Grafana进行实…...

免费送源码:Java+ssm+JSP+Ajax+MySQL SSM汽车租赁管理系统 计算机毕业设计原创定制

摘 要 信息化社会内需要与之针对性的信息获取途径&#xff0c;但是途径的扩展基本上为人们所努力的方向&#xff0c;由于站在的角度存在偏差&#xff0c;人们经常能够获得不同类型信息&#xff0c;这也是技术最为难以攻克的课题。针对汽车租赁信息管理等问题&#xff0c;对其进…...

Vivado viterbi decoder license

Viterbi Decoder 打卡以上链接 添加后next后&#xff0c; 会发送lic文件到邮件&#xff0c;vivado导入lic即可...

【FastAdmin】PHP的Trait机制:代码复用的新选择

PHP的Trait机制&#xff1a;代码复用的新选择 大家好&#xff0c;我是田辛老师。最近收到很多同学的私信&#xff0c;询问关于PHP中Trait机制的相关问题。今天&#xff0c;我们就来详细探讨一下这个强大的代码复用工具&#xff0c;以及它在ThinkPHP 5&#xff08;简称Tp5&…...

小红书制作视频如何去原视频音乐,视频如何去原声保留背景音乐?

在视频编辑、音乐制作或个人娱乐中&#xff0c;有时我们希望去掉视频中的原声&#xff08;如对话、解说等&#xff09;&#xff0c;仅保留背景音乐。这种处理能让观众更加聚焦于视频的氛围或节奏&#xff0c;同时也为创作者提供了更多创意空间。选择恰当的背景音乐&#xff0c;…...

netty之Netty使用Protobuf传输数据

前言 在netty数据传输过程中可以有很多选择&#xff0c;比如&#xff1b;字符串、json、xml、java对象&#xff0c;但为了保证传输的数据具备&#xff1b;良好的通用性、方便的操作性和传输的高性能&#xff0c;我们可以选择protobuf作为我们的数据传输格式。目前protobuf可以支…...

【力扣 | SQL题 | 每日四题】力扣2082, 2084, 2072, 2112, 180

四题都比较简单&#xff0c;可以直接秒。 1. 力扣2082&#xff1a;富有客户的数量 1.1 题目: 表&#xff1a; Store ------------------- | Column Name | Type | ------------------- | bill_id | int | | customer_id | int | | amount | int | -------------…...

快速了解Java中的15把锁!

目录 了解 总览 乐观锁 悲观锁 互斥锁和同步锁 公平锁 非公平锁 自旋锁 可重入锁&#xff08;递归锁&#xff09; ReadWriteLock读写锁 共享锁 独占锁 偏向锁 轻量级锁 重量级锁 锁优化 在 Java 中&#xff0c;锁是一种用于实现多线程之间同步和互斥的机制。 了…...

TypeScript 封装 Axios 1.7.7

随着Axios版本的不同&#xff0c;类型也在改变&#xff0c;以后怎么写类型&#xff1f; yarn add axios1. 封装Axios 将Axios封装成一个类&#xff0c;同时重新封装request方法 重新封装request有几个好处&#xff1a; 所有的请求将从我们定义的requet请求中发送&#xff…...

【数据结构】【链表代码】移除链表元素

移除链表元素 /*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/struct ListNode* removeElements(struct ListNode* head, int val) { // 创建一个虚拟头节点&#xff0c;以处理头节点可能被删除的情况 struct…...

作文-杭州游记

杭州的学习与游历 在这个风景如画的城市——杭州&#xff0c;学习信息学的日子如同西湖的水&#xff0c;清澈而又深邃。在这里&#xff0c;课堂与自然的交融、技术与文化的碰撞&#xff0c;构成了一幅独特的画卷。 学习之旅 信息学的课程不仅仅是对代码和算法的解析&#xff0…...

降压芯片TPS54821

降压芯片TPS54821 介绍 价格低廉&#xff0c;只需1.5元。是一个同步整流降压BUCK电路。MOS管内置。输入电压为4.5V至17V&#xff0c;输出电压为0.6V到15V&#xff0c;输出电流最大到8A。是QFN封装&#xff0c;焊接时有些许困难。得益于QFN封装&#xff0c;其引线电感非常的小…...

YOLO v1详解解读

&#x1f680; 在此之前主要介绍了YOLO v5源码的安装和使用&#xff08;YOLO v5安装教程&#xff09;&#xff0c;接下来将探索YOLO的实现原理&#xff0c;作为一个金典的单阶段目标检测算法&#xff0c;应该深度的理解它的构建思想&#xff1b;所以本系列文章将从LOVO v1出发到…...

【动态规划-最长公共子序列(LCS)】【hard】【科大讯飞笔试最后一题】力扣115. 不同的子序列

给你两个字符串 s 和 t &#xff0c;统计并返回在 s 的 子序列 中 t 出现的个数&#xff0c;结果需要对 10^9 7 取模。 示例 1&#xff1a; 输入&#xff1a;s “rabbbit”, t “rabbit” 输出&#xff1a;3 解释&#xff1a; 如下所示, 有 3 种可以从 s 中得到 “rabbit”…...

深入理解 JavaScript 中的 void`运算符和 yield*表达式

深入理解 JavaScript 中的 void 运算符和 yield* 表达式 在 JavaScript 中&#xff0c;void 运算符和 yield* 表达式是两个功能独特但常被忽视的运算符。本文将详细介绍它们的用法和应用场景&#xff0c;帮助您更好地理解和运用这两个运算符。 目录 void 运算符概述void 运算…...

第四节——从深层剖析指针(让你不再害怕指针)

文章目录 1. 字符指针变量剑指offer例题 2. 数组指针变量2.1 数组指针变量是什么&#xff1f;2.2 数组指针变量怎么初始化 3. ⼆维数组传参的本质代码实现 4. 函数指针变量4.1 函数指针变量的创建4.3 两段有趣的代码4.3.1 typedef 关键字 5. 函数指针数组的定义 1. 字符指针变量…...

openpnp - 吸嘴校正失败的opencv参数分析

文章目录 openpnp - 吸嘴校正失败的opencv参数分析概述笔记阶段验证 - N2吸嘴校验完NT1NT2 阶段验证 - 底部相机高级校验完NT1NT2 参数比对保存 “阶段验证 - N2吸嘴校验完” 的NT1/NT2图像重建参数检测环境NT1ok的3个参数值NT1err的3个参数值NT2ok的3个参数值NT2err的3个参数值…...

【Python】Marmir 使用指南:Python 驱动的电子表格生成器

Marmir 是一个由 Python 驱动的电子表格生成工具&#xff0c;专门用于将 Python 数据结构&#xff08;如字典、列表等&#xff09;转换为电子表格文件&#xff08;如 Excel&#xff09;。Marmir 的设计目标是提供比传统电子表格库&#xff08;如 xlwt&#xff09;更强大和灵活的…...

深入理解 JavaScript 事件循环机制:单线程中的异步处理核心

深入理解 JavaScript 事件循环机制&#xff1a;单线程中的异步处理核心 JavaScript 是一门单线程的编程语言&#xff0c;也就是说它在同一时间只能执行一个任务。然而&#xff0c;现代 Web 应用经常需要处理大量的异步操作&#xff0c;如用户输入、网络请求、定时器等。为了确…...

Stream流的终结方法(二)——collect

1.Stream流的终结方法 2. collect方法 collect方法用于收集流中的数据放到集合中去&#xff0c;可以将流中的数据放到List&#xff0c;Set&#xff0c;Map集合中 2.1 将流中的数据收集到List集合中 package com.njau.d10_my_stream;import java.util.*; import java.util.f…...

【C语言系统编程】【第一部分:操作系统知识】1.1.操作系统原理

第一部分&#xff1a;操作系统知识 1.1 操作系统原理 1.1.1 进程管理 1.1.1.1 进程的概念与生命周期 进程是程序在计算机中的一次执行实例&#xff0c;包括了程序的代码、数据、以及运行的上下文环境。进程管理是操作系统的核心任务之一。 作用&#xff1a;管理所有执行中…...

基于Java+VUE+echarts大数据智能道路交通信息统计分析管理系统

大数据智能交通管理系统是一种基于Web的系统架构&#xff0c;通过浏览器/服务器&#xff08;B/S&#xff09;模式实现对城市交通数据的高效管理和智能化处理。该系统旨在通过集成各类交通数据&#xff0c;包括但不限于车辆信息、行驶记录、违章情况等&#xff0c;来提升城市管理…...