verilog实现FIR滤波系数生成(阶数,FIR滤波器类型及窗函数可调)
在以往采用 FPGA 实现的 FIR 滤波功能,滤波器系数是通过 matlab 计算生成,然后作为固定参数导入到 verilog 程序中,这尽管简单,但灵活性不足。在某些需求下(例如捕获任意给定台站信号)需要随时修改滤波器的中心频率、带宽等信息,这要么通过上位机计算系数后更新到 FPGA 端(但并非所有设备都具备配套的上位机),要么直接在 FPGA 端计算并更新滤波器系数。本文对后者进行实现。
计算 FIR 滤波器系数,主要包括两个方面的计算:窗函数计算,滤波器系数计算。
窗函数生成
几种常用窗函数
首先给出几种常用的窗函数的表达式,这里不对窗函数细节进行讨论:
- 矩形窗
w ( n ) = 1.0 , n = 0 , 1 , . . . , N − 1 w(n) = 1.0,\ n=0,1,...,N-1 w(n)=1.0, n=0,1,...,N−1
- 三角窗
w ( n ) = 1 − ∣ 1 − 2 n N − 1 ∣ , n = 0 , 1 , . . . , N − 1 w(n)=1 - |1 - \frac{2n}{N - 1}|,\ n=0,1,...,N-1 w(n)=1−∣1−N−12n∣, n=0,1,...,N−1
- 图基窗 Tukey
w ( n ) = { 0.5 − 0.5 cos ( n π k + 1 ) , 0 ≤ n ≤ k 1.0 , k < n ≤ N − k − 2 0.5 − 0.5 cos ( π ( N − n − 1 ) k + 1 ) , N − k − 2 < n ≤ N − 1 , where k = N − 2 10 w(n)= \left\{ \begin{aligned} 0.5 - 0.5\cos(\frac{n\pi}{k + 1}),&\ 0\le n\le k\\ 1.0,&\ k<n\le N-k-2\\ 0.5 - 0.5\cos(\frac{\pi(N - n - 1)}{k + 1}),&\ N-k-2<n\le N-1\ \end{aligned} \right. ,\ \text{where}\ k=\frac{N-2}{10} w(n)=⎩ ⎨ ⎧0.5−0.5cos(k+1nπ),1.0,0.5−0.5cos(k+1π(N−n−1)), 0≤n≤k k<n≤N−k−2 N−k−2<n≤N−1 , where k=10N−2
- 汉宁窗 Hann
w ( n ) = 0.5 × [ 1.0 − cos ( 2 π n N − 1 ) ] , n = 0 , 1 , . . . , N − 1 w(n)=0.5 \times [1.0 - \cos(\frac{2\pi n}{N - 1})],\ n=0,1,...,N-1 w(n)=0.5×[1.0−cos(N−12πn)], n=0,1,...,N−1
- 汉明窗 Hamming
w ( n ) = 0.54 − 0.46 cos ( 2 π n N − 1 ) , n = 0 , 1 , . . . , N − 1 w(n)=0.54 - 0.46\cos(\frac{2\pi n}{N - 1}),\ n=0,1,...,N-1 w(n)=0.54−0.46cos(N−12πn), n=0,1,...,N−1
- 布莱克曼窗 Blackman
w ( n ) = 0.42 − 0.5 cos ( 2 π n N − 1 ) + 0.08 cos ( 4 π n N − 1 ) , n = 0 , 1 , . . . , N − 1 w(n)=0.42 - 0.5\cos(\frac{2\pi n}{N - 1}) + 0.08\cos(\frac{4\pi n}{N-1}),\ n=0,1,...,N-1 w(n)=0.42−0.5cos(N−12πn)+0.08cos(N−14πn), n=0,1,...,N−1
verilog 实现
可以观察到,Tukey、Hann、Hamming 和 Blackman 窗都用到了余弦函数,这可以用正余弦查找表实现,下面代码中会用到这一模块,可参考我这篇博文;窗函数生成器代码如下
/* * file : FIR_windows_generator.v* author : 今朝无言* lab : WHU-EIS-LMSWE* date : 2024-09-26* version : v1.0* description : 生成指定阶数、指定类型的窗函数*/
`default_nettype none
module FIR_windows_generator(
input wire clk,
input wire rst_n,input wire en, //上升沿触发窗口计算
input wire [3:0] win_type, //窗口类型,1:矩形窗,2:图基窗Tukey,3:三角窗,4:汉宁窗Hann,5:海明窗Hamming,6:布莱克曼窗Blackman,(7:凯塞窗kaiser, 暂未实现)
input wire [15:0] n, //窗口长度
input wire [15:0] i, //窗口索引值,0 ~ n-1
//input wire signed [15:0] beta, //kaiser窗的参数beta,win_type=7时需要这个参数,其他情况可任意给值output wire busy, //指示模块是否计算完成
output wire signed [15:0] win
);reg signed [15:0] win_buf = 16'sd256; //8-8有符号定点数
reg signed [15:0] win_buf_d0 = 16'sd256;
reg busy_buf = 1'b0;assign win = win_buf_d0;
assign busy = busy_buf;localparam S_IDLE = 4'h1;
localparam S_CAL = 4'h2;
localparam S_END = 4'h4;reg [3:0] state = S_IDLE;
reg [3:0] next_state;always @(posedge clk) beginif(~rst_n) beginstate <= S_IDLE;endelse beginstate <= next_state;end
endalways @(*) begincase(state)S_IDLE: beginif(en_pe) beginnext_state <= S_CAL;endelse beginnext_state <= S_IDLE;endendS_CAL: begincase(win_type)4'd1: begin //矩形窗next_state <= S_END;end4'd2: begin //图基窗if(cnt >= 4'd4) beginnext_state <= S_END;endelse beginnext_state <= S_CAL;endend4'd3: begin //三角窗if(cnt >= 4'd1) beginnext_state <= S_END;endelse beginnext_state <= S_CAL;endend4'd4: begin //汉宁窗if(cnt >= 4'd3) beginnext_state <= S_END;endelse beginnext_state <= S_CAL;endend4'd5: begin //海明窗if(cnt >= 4'd3) beginnext_state <= S_END;endelse beginnext_state <= S_CAL;endend4'd6: begin //布莱克曼窗if(cnt >= 4'd5) beginnext_state <= S_END;endelse beginnext_state <= S_CAL;endend// 4'd7: begin //凯塞窗 这个涉及到循环逼近bessel函数和sqrt计算,FPGA比较麻烦,就先不实现这个窗口类型了// next_state <= S_END;// enddefault: beginnext_state <= S_END;endendcaseendS_END: beginnext_state <= S_IDLE;enddefault: beginnext_state <= S_IDLE;endendcase
end//en 边沿检测
wire en_pe;
detect_sig_edge detect_sig_edge_inst(.clk (clk), //工作时钟.sig (en), //待检测信号.sig_pe (en_pe), //信号上升沿.sig_ne (), //下降沿.sig_de () //双边沿
);//cnt 控制读取cosin结果,以计算窗口值
reg [3:0] cnt = 4'd0;
always @(posedge clk) begincase(state)S_IDLE: begincnt <= 4'd0;endS_CAL: begincnt <= cnt + 1'b1;enddefault: begincnt <= 4'd0;endendcase
end//win_buf
reg signed [31:0] multi_tmp = 32'sd0;
always @(posedge clk) beginif(~rst_n) beginwin_buf <= 16'sd256; //1.0endelse case(state)S_CAL: begincase(win_type)4'd1: begin //矩形窗win_buf <= 16'sd256;end4'd2: begin //图基窗if(cnt == 4'd4) beginif(i <= k) beginwin_buf <= (16'sd256 - (cos_val_s >>> 7)) >>> 1;endelse if(i > n - k - 4'd2) beginwin_buf <= (16'sd256 - (cos_val_s >>> 7)) >>> 1;endelse beginwin_buf <= 16'sd256;endendelse beginwin_buf <= win_buf;endend4'd3: begin //三角窗if(cnt == 4'd0) beginmulti_tmp <= 16'sd512 * i / (n - 1'b1);endelse if(cnt == 4'd1) beginwin_buf <= 16'sd256 - abs(16'sd256 - multi_tmp[15:0]);endelse beginwin_buf <= win_buf;endend4'd4: begin //汉宁窗if(cnt == 4'd3) beginwin_buf <= 16'sd128 - (cos_val_s >>> 8); //0.5 * (1.0 - cos(2 * i * pi / (n - 1)));endelse beginwin_buf <= win_buf;endend4'd5: begin //海明窗if(cnt == 4'd3) beginwin_buf <= 16'sd138 - ((16'sd118 * (cos_val_s >>> 7)) >>> 8); //0.54 - 0.46 * cos(2 * i * pi / (n - 1));endelse beginwin_buf <= win_buf;endend4'd6: begin //布莱克曼窗if(cnt == 4'd3) beginwin_buf <= 16'sd108 - (cos_val_s >>> 8);endelse if(cnt == 4'd5) beginwin_buf <= win_buf + ((16'sd82 * (cos_val_s >>> 7)) >>> 10);endelse beginwin_buf <= win_buf;endend// 4'd7: begin //凯塞窗// win_buf <= 16'sd0;// enddefault: beginwin_buf <= 16'sd256;endendcaseenddefault: beginwin_buf <= win_buf;endendcase
end//busy_buf
always @(*) begincase(state)S_IDLE: beginbusy_buf <= 1'b0;enddefault: beginbusy_buf <= 1'b1;endendcase
end//cos_phase
reg [15:0] k = 16'd0;
always @(posedge clk) begincase(state)S_CAL: begincase(win_type)4'd1: begin //矩形窗cos_phase <= 16'd0;end4'd2: begin //图基窗if(cnt == 4'd0) begink <= (n - 2'd2) / 4'd10;cos_phase <= cos_phase;endelse if(cnt == 4'd1) begink <= k;if(i <= k) begincos_phase <= i * (16'd32768 / (k + 1'b1)) + 16'd16384;endelse if(i > n - k - 2'd2) begincos_phase <= (n - i - 1'b1) * (16'd32768 / (k + 1'b1)) + 16'd16384;endelse begincos_phase <= 16'd0;endendelse begincos_phase <= cos_phase;k <= k;endend4'd3: begin //三角窗cos_phase <= 16'd0;end4'd4: begin //汉宁窗cos_phase <= 2'd2 * i * (16'd32768 / (n - 1'b1)) + 16'd16384;end4'd5: begin //海明窗cos_phase <= 2'd2 * i * (16'd32768 / (n - 1'b1)) + 16'd16384;end4'd6: begin //布莱克曼窗if(cnt == 4'd0) begincos_phase <= 2'd2 * i * (16'd32768 / (n - 1'b1)) + 16'd16384;endelse if(cnt == 4'd2) begincos_phase <= 4'd4 * i * (16'd32768 / (n - 1'b1)) + 16'd16384;endelse begincos_phase <= cos_phase;endend// 4'd7: begin //凯塞窗// cos_phase <= 16'd0;// enddefault: begincos_phase <= 16'd0;endendcaseenddefault: begincos_phase <= cos_phase;endendcase
end//sin_rom
reg [15:0] cos_phase = 16'd0;
wire [15:0] cos_out;
sin_gen sin_gen_inst(.clk (clk),.phase (cos_phase), //相位,0~65535对应[0~2pi).sin_out (cos_out) //0~65535
);wire signed [15:0] cos_val_s;
assign cos_val_s = {~cos_out[15], cos_out[14:0]};//win_buf_d0
always @(posedge clk) begincase(state)S_END: beginwin_buf_d0 <= win_buf;enddefault: beginwin_buf_d0 <= win_buf_d0;endendcase
end//------------------func------------------------------
function signed [15:0] abs(input signed [15:0] a);beginabs = (a >= 16'sd0)? a : -a;end
endfunctionendmodule
测试
testbench 如下
`timescale 1ns/100psmodule FIR_windows_generate_tb();reg clk_100M = 1'b1;
always #5 beginclk_100M <= ~clk_100M;
endreg rst_n = 1'b1;reg en; //上升沿触发窗口计算
reg [3:0] win_type; //窗口类型,1:矩形窗,2:图基窗,3:三角窗,4:汉宁窗,5:海明窗,6:布莱克曼窗
reg [15:0] n; //滤波器阶数
reg [15:0] i; //窗口索引值,0 ~ n-1wire busy;
wire signed [15:0] win;FIR_windows_generator FIR_windows_generator_inst(.clk (clk_100M),.rst_n (rst_n),.en (en), //上升沿触发窗口计算.win_type (win_type), //窗口类型,1:矩形窗,2:图基窗,3:三角窗,4:汉宁窗,5:海明窗,6:布莱克曼窗.n (n), //滤波器阶数.i (i), //窗口索引值,0 ~ n-1.busy (busy), //指示模块是否计算完成.win (win)
);//进行一组FIR_win的计算
task cal_win;input [3:0] WIN_TYPE;input [15:0] N;integer k;beginn = N;win_type = WIN_TYPE;#10;for (k = 0; k < N; k = k + 1'b1) begini = k;en = 1'b1;wait(busy);#10;en = 1'b0;wait(~busy);#10;endend
endtaskinitial beginrst_n <= 1'b0;en <= 1'b0;win_type <= 1'b1;n <= 16'd16;i <= 16'd0;#100;rst_n <= 1'b1;#100;cal_win(1, 64); //矩形窗#100;cal_win(3, 64); //三角窗#100;cal_win(2, 64); //图基窗#100;cal_win(4, 64); //汉宁窗#100;cal_win(5, 64); //海明窗#100;cal_win(6, 64); //布莱克曼窗#200;$stop;
endendmodule
仿真结果如下

滤波器系数计算
FIR 滤波器冲激响应
这里给出理想低通 FIR 滤波器,理想高通 FIR 滤波器、理想带通 FIR 滤波器、理想带阻 FIR 滤波器的冲激响应函数表达式:
- 低通
h L P ( n ) = sin ( 2 π f c f s s ) π s , where s = ∣ n − N 2 ∣ , n = 0 , 1 , . . . , N h_{LP}(n)=\frac{\sin(\frac{2\pi f_{c}}{f_s}s)}{\pi s},\ \text{where}\ s=|n-\frac{N}{2}|,\ n=0,1,...,N hLP(n)=πssin(fs2πfcs), where s=∣n−2N∣, n=0,1,...,N
其中 f s f_s fs 为采样率, f c f_c fc 为截止频率。
- 高通
h H P ( n ) = sin ( π s ) − sin ( 2 π f c f s s ) π s , where s = ∣ n − N 2 ∣ , n = 0 , 1 , . . . , N h_{HP}(n)=\frac{\sin(\pi s)-\sin(\frac{2\pi f_{c}}{f_s}s)}{\pi s},\ \text{where}\ s=|n-\frac{N}{2}|,\ n=0,1,...,N hHP(n)=πssin(πs)−sin(fs2πfcs), where s=∣n−2N∣, n=0,1,...,N
- 带通
h B P ( n ) = sin ( 2 π f c 2 f s s ) − sin ( 2 π f c 1 f s s ) π s , where s = ∣ n − N 2 ∣ , n = 0 , 1 , . . . , N h_{BP}(n)=\frac{\sin(\frac{2\pi f_{c2}}{f_s}s)-\sin(\frac{2\pi f_{c1}}{f_s}s)}{\pi s},\ \text{where}\ s=|n-\frac{N}{2}|,\ n=0,1,...,N hBP(n)=πssin(fs2πfc2s)−sin(fs2πfc1s), where s=∣n−2N∣, n=0,1,...,N
其中 f c 1 f_{c1} fc1 为下截止频率, f c 2 f_{c2} fc2 为上截止频率。
- 带阻
h B S ( n ) = sin ( 2 π f c 1 f s s ) + sin ( π s ) − sin ( 2 π f c 2 f s s ) π s , where s = ∣ n − N 2 ∣ , n = 0 , 1 , . . . , N h_{BS}(n)=\frac{\sin(\frac{2\pi f_{c1}}{f_s}s)+\sin(\pi s)-\sin(\frac{2\pi f_{c2}}{f_s}s)}{\pi s},\ \text{where}\ s=|n-\frac{N}{2}|,\ n=0,1,...,N hBS(n)=πssin(fs2πfc1s)+sin(πs)−sin(fs2πfc2s), where s=∣n−2N∣, n=0,1,...,N
在实际设计中,FIR 滤波的数据要加窗以将无限冲激的 sinc 函数截断为有限长(即窗函数法 FIR 滤波器设计),因此将以上冲激响应与窗函数相乘即可。在计算以上冲激函数时,当阶数 N 为偶数时,则会在 n = N / 2 n=N/2 n=N/2 时出现除零的问题,此时利用洛必达法则进行计算即可。
verilog 实现
/* * file : FIR_firwin_generator.v* author : 今朝无言* lab : WHU-EIS-LMSWE* date : 2024-09-26* version : v1.0* description : 生成指定阶数、指定类型的FIR滤波窗口*/
`default_nettype none
module FIR_firwin_generator(
input wire clk,
input wire rst_n,input wire en, //上升沿触发窗口计算
input wire [1:0] band_type, //滤波器类型,0:低通LP,1:高通HP,2:带通BP,3:带阻BS
input wire signed [15:0] fs, //采样率,注意fln,fhn均应小于fs/2
input wire signed [15:0] fln, //滤波器下频点,LP,HP,BP,BS均会用到
input wire signed [15:0] fhn, //滤波器上频点,BP,BS用到
input wire [3:0] win_type, //窗函数类型,1:矩形窗,2:图基窗Tukey,3:三角窗,4:汉宁窗Hann,5:海明窗Hamming,6:布莱克曼窗Blackman
input wire signed [15:0] n, //滤波器阶数 注意,HP/BS的阶数应为偶数,奇数阶的系数不可靠
input wire signed [15:0] i, //0~n,共n+1个值output wire busy, //指示模块是否计算完成
output wire signed [15:0] firwin
);reg signed [31:0] firwin_buf = 32'sd256;
reg signed [15:0] firwin_buf_d0 = 16'sd256; //8-8有符号定点数
reg busy_buf = 1'b0;assign firwin = firwin_buf_d0;
assign busy = busy_buf;localparam S_IDLE = 4'h1;
localparam S_CAL = 4'h2;
localparam S_END = 4'h4;reg [3:0] state = S_IDLE;
reg [3:0] next_state;always @(posedge clk) beginif(~rst_n) beginstate <= S_IDLE;endelse beginstate <= next_state;end
endalways @(*) begincase(state)S_IDLE: beginif(en_pe) beginnext_state <= S_CAL;endelse beginnext_state <= S_IDLE;endendS_CAL: beginif(cnt >= 4'd12) begin //最迟在cnt=7可以读取窗函数值并计算firwin,随后本模块可计算firwinnext_state <= S_END;endelse beginnext_state <= S_CAL;endendS_END: beginnext_state <= S_IDLE;enddefault: beginnext_state <= S_IDLE;endendcase
end//firwin_buf
always @(posedge clk) begincase(state)S_CAL: begincase(band_type)2'd0: begin //LPif(cnt == 4'd3) beginif((~n[0]) && (i_buf == n/4'sd2)) begin //偶数阶滤波器,计算最中间的滤波器系数 即洛必达求=0时的值firwin_buf <= (({fln, 16'b0} / fs) * 16'sd804) >>> 8; //3.1415 = 804/256endelse beginfirwin_buf <= sin_val_s / s_mlti2 * 4'sd2;endendelse if(cnt == 4'd7) beginfirwin_buf <= (firwin_buf * win) >>> 16;endelse beginfirwin_buf <= firwin_buf;endend2'd1: begin //HPif(cnt == 4'd3) beginif((~n[0]) && (i_buf == n/4'sd2)) begin //偶数阶滤波器,计算最中间的滤波器系数 即洛必达求=0时的值firwin_buf <= ((32'sd32768 - {fln, 16'b0} / fs) * 16'sd804) >>> 8;endelse beginfirwin_buf <= sin_val_s;endendelse if(cnt == 4'd7) beginif((~n[0]) && (i_buf == n/4'sd2)) beginfirwin_buf <= firwin_buf;endelse beginfirwin_buf <= (firwin_buf - sin_val_s) / s_mlti2 * 4'sd2;endendelse if(cnt == 4'd8) beginfirwin_buf <= (firwin_buf * win) >>> 16;endelse beginfirwin_buf <= firwin_buf;endend2'd2: begin //BPif(cnt == 4'd3) beginif((~n[0]) && (i_buf == n/4'sd2)) begin //偶数阶滤波器,计算最中间的滤波器系数 即洛必达求=0时的值firwin_buf <= ((({fhn, 16'b0} - {fln, 16'b0}) / fs) * 16'sd804) >>> 8;endelse beginfirwin_buf <= sin_val_s;endendelse if(cnt == 4'd7) beginif((~n[0]) && (i_buf == n/4'sd2)) beginfirwin_buf <= firwin_buf;endelse beginfirwin_buf <= (firwin_buf - sin_val_s) / s_mlti2 * 4'sd2;endendelse if(cnt == 4'd8) beginfirwin_buf <= (firwin_buf * win) >>> 16;endelse beginfirwin_buf <= firwin_buf;endend2'd3: begin //BSif(cnt == 4'd3) beginif((~n[0]) && (i_buf == n/4'sd2)) begin //偶数阶滤波器,计算最中间的滤波器系数 即洛必达求=0时的值firwin_buf <= (({fln, 16'b0} / fs + 32'sd32768 - {fhn, 16'b0} / fs) * 16'sd804) >>> 8;endelse beginfirwin_buf <= sin_val_s;endendelse if(cnt == 4'd7) beginif((~n[0]) && (i_buf == n/4'sd2)) beginfirwin_buf <= firwin_buf;endelse beginfirwin_buf <= firwin_buf + sin_val_s;endendelse if(cnt == 4'd11) beginif((~n[0]) && (i_buf == n/4'sd2)) beginfirwin_buf <= firwin_buf;endelse beginfirwin_buf <= (firwin_buf - sin_val_s) / s_mlti2 * 4'sd2;endendelse if(cnt == 4'd12) beginfirwin_buf <= (firwin_buf * win) >>> 16;endelse beginfirwin_buf <= firwin_buf;endenddefault: beginfirwin_buf <= firwin_buf;endendcaseenddefault: beginfirwin_buf <= firwin_buf;endendcase
end//i_buf
reg signed [15:0] i_buf;
always @(posedge clk) beginif(i > (n >>> 1)) begini_buf <= n - i; //滤波器是对称的,这里处理后利用i_buf计算滤波器系数endelse begini_buf <= i;end
end//sin_phase
reg [31:0] multi_tmp;
always @(posedge clk) begincase(state)S_CAL: beginsin_phase <= multi_tmp[15:0];enddefault: beginsin_phase <= sin_phase;endendcase
endreg signed [15:0] s_mlti2;
always @(*) begins_mlti2 <= n - i_buf * 4'sd2;
endalways @(*) begincase(state)S_CAL: begincase(band_type)2'd0: begin //LPmulti_tmp <= (({fln, 16'b0} / fs) * s_mlti2) >> 1;end2'd1: begin //HPif(cnt <= 4'd3) beginmulti_tmp <= {s_mlti2, 14'b0};endelse beginmulti_tmp <= (({fln, 16'b0} / fs) * s_mlti2) >> 1;endend2'd2: begin //BPif(cnt <= 4'd3) beginmulti_tmp <= (({fhn, 16'b0} / fs) * s_mlti2) >> 1;endelse beginmulti_tmp <= (({fln, 16'b0} / fs) * s_mlti2) >> 1;endend2'd3: begin //BSif(cnt <= 4'd3) beginmulti_tmp <= (({fln, 16'b0} / fs) * s_mlti2) >> 1;endelse if(cnt <= 4'd7) beginmulti_tmp <= {s_mlti2, 14'b0};endelse beginmulti_tmp <= (({fhn, 16'b0} / fs) * s_mlti2) >> 1;endenddefault: beginmulti_tmp <= 32'd0;endendcaseenddefault: beginmulti_tmp <= 32'd0;endendcase
end//窗函数
wire signed [15:0] win;
FIR_windows_generator FIR_windows_generator_inst(.clk (clk),.rst_n (rst_n),.en (en), //上升沿触发窗口计算.win_type (win_type), //窗口类型,1:矩形窗,2:图基窗Tukey,3:三角窗,4:汉宁窗Hann,5:海明窗Hamming,6:布莱克曼窗Blackman.n (n + 1'b1), //窗口长度,=滤波器阶数+1.i (i), //窗口索引值.busy (), //指示模块是否计算完成.win (win)
);//en 边沿检测
wire en_pe;
detect_sig_edge detect_sig_edge_inst(.clk (clk), //工作时钟.sig (en), //待检测信号.sig_pe (en_pe), //信号上升沿.sig_ne (), //下降沿.sig_de () //双边沿
);//cnt 控制计算流程
reg [3:0] cnt = 4'd0;
always @(posedge clk) begincase(state)S_IDLE: begincnt <= 4'd0;endS_CAL: begincnt <= cnt + 1'b1;enddefault: begincnt <= 4'd0;endendcase
end//busy_buf
always @(*) begincase(state)S_IDLE: beginbusy_buf <= 1'b0;enddefault: beginbusy_buf <= 1'b1;endendcase
end//sin_rom
reg [15:0] sin_phase = 16'd0;
wire [15:0] sin_out;
sin_gen sin_gen_inst(.clk (clk),.phase (sin_phase), //相位,0~65535对应[0~2pi).sin_out (sin_out) //0~65535
);wire signed [15:0] sin_val_s;
assign sin_val_s = {~sin_out[15], sin_out[14:0]};//firwin_buf_d0
always @(posedge clk) begincase(state)S_END: beginfirwin_buf_d0 <= firwin_buf[15:0];enddefault: beginfirwin_buf_d0 <= firwin_buf_d0;endendcase
endendmodule
测试
testbench 如下
`timescale 1ns/100psmodule FIR_firwin_generate_tb();reg clk_100M = 1'b1;
always #5 beginclk_100M <= ~clk_100M;
endreg rst_n = 1'b1;reg en; //上升沿触发窗口计算reg [1:0] band_type; //滤波器类型,0:低通LP,1:高通HP,2:带通BP,3:带阻BS
reg [15:0] fs; //采样率,注意fln,fhn均应小于fs/2
reg [15:0] fln; //滤波器下频点,LP,HP,BP,BS均会用到
reg [15:0] fhn; //滤波器上频点,BP,BS用到
reg [3:0] win_type; //窗口类型,1:矩形窗,2:图基窗,3:三角窗,4:汉宁窗,5:海明窗,6:布莱克曼窗
reg [15:0] n; //滤波器阶数
reg [15:0] i; //窗口索引值,0 ~ nwire busy;
wire signed [15:0] firwin;FIR_firwin_generator FIR_firwin_generator_inst(.clk (clk_100M),.rst_n (rst_n),.en (en), //上升沿触发窗口计算.band_type (band_type), //滤波器类型,0:低通LP,1:高通HP,2:带通BP,3:带阻BS.fs (fs), //采样率,注意fln,fhn均应小于fs/2.fln (fln), //滤波器下频点,LP,HP,BP,BS均会用到.fhn (fhn), //滤波器上频点,BP,BS用到.win_type (win_type), //窗函数类型,1:矩形窗,2:图基窗Tukey,3:三角窗,4:汉宁窗Hann,5:海明窗Hamming,6:布莱克曼窗Blackman.n (n), //滤波器阶数.i (i), //0~n,共n+1个值.busy (busy),.firwin (firwin)
);//进行一组FIR_win的计算
task cal_firwin;input [1:0] BAND_TYPE;input [15:0] Fs;input [15:0] Fln;input [15:0] Fhn;input [3:0] WIN_TYPE;input [15:0] N;integer k;beginband_type = BAND_TYPE;fs = Fs;fln = Fln;fhn = Fhn;win_type = WIN_TYPE;n = N;#10;for (k = 0; k <= N; k = k + 1'b1) begini = k;en = 1'b1;wait(busy);#10;en = 1'b0;wait(~busy);#10;endend
endtaskinitial beginrst_n <= 1'b0;en <= 1'b0;band_type <= 2'd0;fs <= 16'd100;fln <= 16'd10;fhn <= 16'd60;win_type <= 4'd1;n <= 16'd64;i <= 16'd0;#100;rst_n <= 1'b1;#100;//可与matlab函数fir1(fir_N, Wn, band_type, win)的结果比对 注意其中的Wn是 [fln/f_ny, fhn/f_ny],其中f_ny=fs/2cal_firwin(2'd0, 16'd1000, 16'd50, 16'd100, 4'd1, 16'd64); //LP,矩形窗#200;cal_firwin(2'd0, 16'd1000, 16'd50, 16'd100, 4'd5, 16'd64); //LP,海明窗#200;cal_firwin(2'd0, 16'd1000, 16'd50, 16'd100, 4'd6, 16'd64); //LP,布莱克曼窗#200;cal_firwin(2'd0, 16'd1000, 16'd50, 16'd100, 4'd6, 16'd63); //LP,布莱克曼窗#200;cal_firwin(2'd1, 16'd1000, 16'd50, 16'd100, 4'd1, 16'd64); //HP,矩形窗#200;cal_firwin(2'd1, 16'd1000, 16'd50, 16'd100, 4'd1, 16'd63); //HP,矩形窗 HP的阶数应为偶数,否则系数不可靠,matlab fir1也是只能生成偶数阶的HP#200;cal_firwin(2'd2, 16'd1000, 16'd50, 16'd100, 4'd1, 16'd64); //BP,矩形窗#200;cal_firwin(2'd2, 16'd1000, 16'd50, 16'd100, 4'd1, 16'd63); //BP,矩形窗#200;cal_firwin(2'd2, 16'd1000, 16'd50, 16'd100, 4'd5, 16'd63); //BP,海明窗#200;cal_firwin(2'd3, 16'd1000, 16'd50, 16'd100, 4'd1, 16'd64); //BS,矩形窗#200;cal_firwin(2'd3, 16'd1000, 16'd50, 16'd100, 4'd1, 16'd63); //BS,矩形窗 BS的阶数也应为偶数#200;cal_firwin(2'd3, 16'd1000, 16'd50, 16'd100, 4'd5, 16'd64); //BS,海明窗#200;#200;$stop;
endendmodule
仿真结果如下

读者可与 Matlab 的 fir1 函数结果进行比对。
相关文章:
verilog实现FIR滤波系数生成(阶数,FIR滤波器类型及窗函数可调)
在以往采用 FPGA 实现的 FIR 滤波功能,滤波器系数是通过 matlab 计算生成,然后作为固定参数导入到 verilog 程序中,这尽管简单,但灵活性不足。在某些需求下(例如捕获任意给定台站信号)需要随时修改滤波器的…...
OSPF的不规则区域
1.远离骨干非骨干区域 2.不连续骨干 解决方案 tunnel ---点到点GRE 在合法与非ABR间建立隧道,然后将其宣告于OSPF协议中; 缺点:1、周期和触发信息对中间穿越区域造成资源占用(当同一条路由来自不同区域,路由器会先…...
大数据新视界 --大数据大厂之 Ibis:独特架构赋能大数据分析高级抽象层
💖💖💖亲爱的朋友们,热烈欢迎你们来到 青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…...
总结TypeScript相关知识
目录 引入认识特点安装使用变量声明类型推导 JS 和 TS 共有类型number类型boolean类型string类型Array类型null和undefined类型object类型symbol类型对象类型函数类型 可选和只读type 和 interface索引签名类型断言非空类型断言类型缩小严格赋值检测现象TS 新增类型字面量类型a…...
pdf怎么编辑修改内容?详细介绍6款pdf编辑器功能
■ pdf怎么编辑修改内容? PDF(Portable Document Format)作为一种广泛使用的文件格式,具有特点包括兼容性强、易于传输、文件安全性高、跨平台性、可读性强、完整性、可搜索性、安全性、可压缩性。 PDF文件本身是不可以直接进行编…...
【Blender Python】4.获取场景对象的几种方式
概述 有时候我们需要获取场景中已经添加或存在的对象。本节就总结在Blender Python中获取场景中对象的一些方法。 通过名称获取 py.data的objects()方法返回一个对象集合,可以使用键名或者下标形式获取具体的对象。 在默认新建的场景中,存在三个对象…...
鸿蒙harmonyos next flutter通信之EventChannel获取ohos系统时间
建立通道 flutter代码: EventChannel eventChannel EventChannel("com.xmg.eventChannel"); ohos代码: //定义eventChannelprivate eventChannel: EventChannel | null null//定义eventSinkprivate eventSink: EventSink | null null//建…...
Python 代码编写规范
本规范旨在为 Python 项目的代码编写提供一致性指南。它遵循 Python 社区的 PEP 8 标准,并结合了通用的编程最佳实践。 1. 编码风格 1.1 缩进 使用 4 个空格 作为缩进,不要使用制表符(Tab)。 def example():if True:print(&quo…...
k8s中pod的管理
一、资源管理 1.概述 说到k8s中的pod,即荚的意思,就不得不先提到k8s中的资源管理,k8s中可以用以下命令查看我们的资源: kubectl api-resources 比如我们现在需要使用k8s开启一个东西,那么k8s通过apiserver去对比etc…...
JavaScript中引用数据类型的浅拷贝
在JavaScript中,数据类型被分为“基本数据类型”和“引用数据类型”两大类。基本数据类型包括数值型、字符型、逻辑型、未定义型(undefined)、空型(null)和ES6新增的Symbol类型,引用数据类型包括数组、对象和函数。 当我们在程序中执行变量赋值操作的时候…...
自闭症寄宿学校陕西:提供综合发展的教育环境
在陕西这片古老而充满希望的土地上,有一所特殊的学校——星贝育园康复中心,它如同一座灯塔,照亮了无数自闭症儿童及其家庭前行的道路。这所全国规模较大的广泛性发育障碍全托寄宿制儿童康复训练机构,不仅以其专业的康复训练和独特…...
JS模块化工具requirejs详解
文章目录 JS模块化工具requirejs详解一、引言二、RequireJS 简介1、什么是 RequireJS2、RequireJS 的优势 三、RequireJS 的使用1、配置 RequireJS1.1、基础配置 2、定义模块3、加载模块 四、总结 JS模块化工具requirejs详解 一、引言 随着前端技术的快速发展,Jav…...
JavaScript中的异步编程:从回调到Promise
在JavaScript中,异步编程是一项至关重要的技能,它允许我们在不阻塞主线程的情况下执行耗时操作,如网络请求、文件读取或定时任务。随着JavaScript的发展,异步编程的模式也在不断演进,从最初的回调函数,到现…...
windows下DockerDesktop命令行方式指定目录安装
windows下DockerDesktop指定目录安装(重新安装) 因为DcokerDesktop占用内存较大, 并且拉去镜像后占用本地空间较多,所以建议安装时就更改默认安装路径和镜像存储路径 这里,展示了从下载到安装的过程: 首先下载DcokerDesktop;找到Docker Desktop Installer.exe 并重命名为 do…...
排查和解决JVM OOM实战
JVM OOM介绍 Java内存区域布局 下面的分析中都是基于JDK 8开始的。关于JMM不过多介绍每个区域的作用。OOM不单只会发生在堆内存,也可能是因为元空间或直接内存泄漏导致OOM,此时在OOM的详细信息中会有不同体现。 Java OOM的类别 java.lang.OutOfMemory…...
【Swift官方文档】7.Swift集合类型
集合类型 使用数组、集合和字典来组织数据。Swift 提供了三种主要的集合类型:数组、集合和字典,用于存储值的集合。数组是有序的值集合。集合是无序的唯一值集合。字典是无序的键值对集合。 Swift 中的数组、集合和字典始终清晰地指明它们可以存储的值…...
QT调用最新的libusb库
一:下载libusb文件 下载最新的库的下载网站:https://libusb.info/ 下载: 解压后目录如下: 二:库文件添加QT中 根据自己的编译器选择库: ①将头文件中添加libusb.h ②源文件中添加libusb-1.0.lib ③添加…...
白嫖EarMaster Pro 7简体中文破解版下载永久激活
EarMaster Pro 7 简体中文破解版功能介绍 俗话说得好,想要成为音乐家,就必须先拥有音乐家的耳朵,相信很多小伙伴都已经具备了一定的音乐素养,或者是说想要进一步得到提升。那我们就必须练好听耳的能力,并且把这种能力…...
使用JavaScript写一个网页端的四则运算器
目录 style(内联样式表部分) body部分 html script 总的代码 网页演示 style(内联样式表部分) <style>body {font-family: Arial, sans-serif;display: flex;justify-content: center;align-items: center;height: 100vh;background-color: #f0f0f0;}.calculator {…...
Linux find命令详解及实用示例
Linux 系统中的 find 命令是一个功能强大的工具,用于在文件系统中搜索文件并执行相应的操作。无论是系统管理员还是普通用户,掌握 find 命令都能极大地提高工作效率。本文将详细介绍 find 命令的用法,并通过多个示例展示其在实际中的应用。 …...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
3.3.1_1 检错编码(奇偶校验码)
从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...
uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...
scikit-learn机器学习
# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...
毫米波雷达基础理论(3D+4D)
3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文: 一文入门汽车毫米波雷达基本原理 :https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...
