强化学习笔记之【DDPG算法】
强化学习笔记之【DDPG算法】
文章目录
- 强化学习笔记之【DDPG算法】
- 前言:
- 原论文伪代码
- DDPG算法
- DDPG 中的四个网络
- 代码核心更新公式
前言:
本文为强化学习笔记第二篇,第一篇讲的是Q-learning和DQN
就是因为DDPG引入了Actor-Critic模型,所以比DQN多了两个网络,网络名字功能变了一下,其它的就是软更新之类的小改动而已
本文初编辑于2024.10.6
CSDN主页:https://blog.csdn.net/rvdgdsva
博客园主页:https://www.cnblogs.com/hassle
博客园本文链接:
原论文伪代码
- 上述代码为DDPG原论文中的伪代码
DDPG算法
需要先看:
Deep Reinforcement Learning (DRL) 算法在 PyTorch 中的实现与应用【DDPG部分】【没有在选择一个新的动作的时候,给policy函数返回的动作值增加一个噪音】【critic网络与下面不同】
深度强化学习笔记——DDPG原理及实现(pytorch)【DDPG伪代码部分】【这个跟上面的一样没有加噪音】【critic网络与上面不同】
【深度强化学习】(4) Actor-Critic 模型解析,附Pytorch完整代码【选看】【Actor-Critic理论部分】
如果需要给policy函数返回的动作值增加一个噪音,实现如下
def select_action(self, state, noise_std=0.1):state = torch.FloatTensor(state.reshape(1, -1))action = self.actor(state).cpu().data.numpy().flatten()# 添加噪音,上面两个文档的代码都没有这个步骤noise = np.random.normal(0, noise_std, size=action.shape)action = action + noisereturn action
DDPG 中的四个网络
注意!!!这个图只展示了Critic网络的更新,没有展示Actor网络的更新
- Actor 网络(策略网络):
- 作用:决定给定状态 ss 时,应该采取的动作 a=π(s)a=π(s),目标是找到最大化未来回报的策略。
- 更新:基于 Critic 网络提供的 Q 值更新,以最大化 Critic 估计的 Q 值。
- Target Actor 网络(目标策略网络):
- 作用:为 Critic 网络提供更新目标,目的是让目标 Q 值的更新更为稳定。
- 更新:使用软更新,缓慢向 Actor 网络靠近。
- Critic 网络(Q 网络):
- 作用:估计当前状态 ss 和动作 aa 的 Q 值,即 Q(s,a)Q(s,a),为 Actor 提供优化目标。
- 更新:通过最小化与目标 Q 值的均方误差进行更新。
- Target Critic 网络(目标 Q 网络):
- 作用:生成 Q 值更新的目标,使得 Q 值更新更为稳定,减少振荡。
- 更新:使用软更新,缓慢向 Critic 网络靠近。
大白话解释:
1、DDPG实例化为actor,输入state输出action
2、DDPG实例化为actor_target
3、DDPG实例化为critic_target,输入next_state和actor_target(next_state)经DQN计算输出target_Q
4、DDPG实例化为critic,输入state和action输出current_Q,输入state和actor(state)【这个参数需要注意,不是action】经负均值计算输出actor_loss
5、current_Q 和target_Q进行critic的参数更新
6、actor_loss进行actor的参数更新
action实际上是batch_action,state实际上是batch_state,而batch_action != actor(batch_state)
因为actor是频繁更新的,而采样是随机采样,不是所有batch_action都能随着actor的更新而同步更新
Critic网络的更新是一发而动全身的,相比于Actor网络的更新要复杂要重要许多
代码核心更新公式
t a r g e t ‾ Q = c r i t i c ‾ t a r g e t ( n e x t ‾ s t a t e , a c t o r ‾ t a r g e t ( n e x t ‾ s t a t e ) ) t a r g e t ‾ Q = r e w a r d + ( 1 − d o n e ) × g a m m a × t a r g e t ‾ Q . d e t a c h ( ) target\underline{~}Q = critic\underline{~}target(next\underline{~}state, actor\underline{~}target(next\underline{~}state)) \\target\underline{~}Q = reward + (1 - done) \times gamma \times target\underline{~}Q.detach() target Q=critic target(next state,actor target(next state))target Q=reward+(1−done)×gamma×target Q.detach()
- 上述代码与伪代码对应,意为计算预测Q值
c r i t i c ‾ l o s s = M S E L o s s ( c r i t i c ( s t a t e , a c t i o n ) , t a r g e t ‾ Q ) c r i t i c ‾ o p t i m i z e r . z e r o ‾ g r a d ( ) c r i t i c ‾ l o s s . b a c k w a r d ( ) c r i t i c ‾ o p t i m i z e r . s t e p ( ) critic\underline{~}loss = MSELoss(critic(state, action), target\underline{~}Q) \\critic\underline{~}optimizer.zero\underline{~}grad() \\critic\underline{~}loss.backward() \\critic\underline{~}optimizer.step() critic loss=MSELoss(critic(state,action),target Q)critic optimizer.zero grad()critic loss.backward()critic optimizer.step()
- 上述代码与伪代码对应,意为使用均方误差损失函数更新Critic
a c t o r ‾ l o s s = − c r i t i c ( s t a t e , a c t o r ( s t a t e ) ) . m e a n ( ) a c t o r ‾ o p t i m i z e r . z e r o ‾ g r a d ( ) a c t o r ‾ l o s s . b a c k w a r d ( ) a c t o r ‾ o p t i m i z e r . s t e p ( ) actor\underline{~}loss = -critic(state,actor(state)).mean() \\actor\underline{~}optimizer.zero\underline{~}grad() \\ actor\underline{~}loss.backward() \\ actor\underline{~}optimizer.step() actor loss=−critic(state,actor(state)).mean()actor optimizer.zero grad()actor loss.backward()actor optimizer.step()
- 上述代码与伪代码对应,意为使用确定性策略梯度更新Actor
c r i t i c ‾ t a r g e t . p a r a m e t e r s ( ) . d a t a = ( t a u × c r i t i c . p a r a m e t e r s ( ) . d a t a + ( 1 − t a u ) × c r i t i c ‾ t a r g e t . p a r a m e t e r s ( ) . d a t a ) a c t o r ‾ t a r g e t . p a r a m e t e r s ( ) . d a t a = ( t a u × a c t o r . p a r a m e t e r s ( ) . d a t a + ( 1 − t a u ) × a c t o r ‾ t a r g e t . p a r a m e t e r s ( ) . d a t a ) critic\underline{~}target.parameters().data=(tau \times critic.parameters().data + (1 - tau) \times critic\underline{~}target.parameters().data) \\ actor\underline{~}target.parameters().data=(tau \times actor.parameters().data + (1 - tau) \times actor\underline{~}target.parameters().data) critic target.parameters().data=(tau×critic.parameters().data+(1−tau)×critic target.parameters().data)actor target.parameters().data=(tau×actor.parameters().data+(1−tau)×actor target.parameters().data)
- 上述代码与伪代码对应,意为使用策略梯度更新目标网络
Actor和Critic的角色:
- Actor:负责选择动作。它根据当前的状态输出一个确定性动作。
- Critic:评估Actor的动作。它通过计算状态-动作值函数(Q值)来评估给定状态和动作的价值。
更新逻辑:
- Critic的更新:
- 使用经验回放缓冲区(Experience Replay)从中采样一批经验(状态、动作、奖励、下一个状态)。
- 计算目标Q值:使用目标网络(critic_target)来估计下一个状态的Q值(target_Q),并结合当前的奖励。
- 使用均方误差损失函数(MSELoss)来更新Critic的参数,使得预测的Q值(target_Q)与当前Q值(current_Q)尽量接近。
- Actor的更新:
- 根据当前的状态(state)从Critic得到Q值的梯度(即对Q值相对于动作的偏导数)。
- 使用确定性策略梯度(DPG)的方法来更新Actor的参数,目标是最大化Critic评估的Q值。
个人理解:
DQN算法是将q_network中的参数每n轮一次复制到target_network里面
DDPG使用系数 τ \tau τ来更新参数,将学习到的参数更加soft地拷贝给目标网络
DDPG采用了actor-critic网络,所以比DQN多了两个网络
相关文章:
强化学习笔记之【DDPG算法】
强化学习笔记之【DDPG算法】 文章目录 强化学习笔记之【DDPG算法】前言:原论文伪代码DDPG算法DDPG 中的四个网络代码核心更新公式 前言: 本文为强化学习笔记第二篇,第一篇讲的是Q-learning和DQN 就是因为DDPG引入了Actor-Critic模型&#x…...
c++继承(下)
c继承(下) (1)继承与友元(2)继承与静态成员(3)多继承及其菱形继承问题3.1 继承模型3.2 虚继承3.3 多继承中指针偏移问题 (4)继承和组合(9…...
数据结构 ——— 单链表oj题:反转链表
目录 题目要求 手搓一个简易链表 代码实现 题目要求 给你单链表的头节点 head ,请你反转链表,并返回反转后的链表 手搓一个简易链表 代码演示: struct ListNode* n1 (struct ListNode*)malloc(sizeof(struct ListNode)); assert(n1);…...
前端项目npm install报错解决的解决办法
报错问题一: [rootspug-api spug_web]# npm install npm WARN deprecated xterm4.19.0: This package is now deprecated. Move to xterm/xterm instead. npm WARN deprecated workbox-google-analytics4.3.1: It is not compatible with newer versions of GA starting with v…...
vue双向绑定/小程序双向绑定区别
Vue双向绑定与小程序双向绑定在实现方式、语法差异以及功能特性上均存在显著区别。以下是对这两者的详细比较: 一、实现方式 Vue双向绑定 Vue的双向绑定主要通过其响应式数据系统实现。Vue使用Object.defineProperty()方法(或在Vue 3中使用Proxy对象&am…...
华为OD机试真题---字符串变换最小字符串
题目描述: 给定一个字符串s,最多只能进行一次变换,返回变换后能得到的最小字符串(按照字典序进行比较)。 变换规则: 交换字符串中任意两个不同位置的字符。 输入描述: 一串小写字母组成的字符串s 输出描述: 按照要求进行变换得到的最小字符串 补…...
JAVA基础面试题汇总(持续更新)
1、精确运算场景使用浮点型运算问题 精确运算场景(如金融领域计算应计利息)计算数字,使用浮点型,由于精度丢失问题,会导致计算后的结果和预期不一致,使用Bigdecimal类型解决此问题,示例代码如下…...
设计模式-创建型-常用:单例模式、工厂模式、建造者模式
单例模式 概念 一个类只允许创建一个对象(或实例),那这个类就是单例类,这种设计模式就叫做单例模式。对于一些类,创建和销毁比较复杂,如果每次使用都创建一个对象会很耗费性能,因此可以把它设…...
【数据结构】【链表代码】随机链表的复制
/*** Definition for a Node.* struct Node {* int val;* struct Node *next;* struct Node *random;* };*/typedef struct Node Node; struct Node* copyRandomList(struct Node* head) {if(headNULL)return NULL;//1.拷贝结点,连接到原结点的后面Node…...
Linux 系统五种帮助命令的使用
Linux 系统五种帮助命令的使用 本文将介绍 Linux 系统中常用的帮助命令,包括 man、–help、whatis、apropos 和 info 命令。这些命令对于新手和有经验的用户来说,都是查找命令信息、理解命令功能的有力工具。 文章目录 Linux 系统五种帮助命令的使用一…...
Vueron引领未来出行:2026年ADAS激光雷达解决方案上市路线图深度剖析
Vueron ADAS激光雷达解决方案路线图分析:2026年上市展望 Vueron近期发布的ADAS激光雷达解决方案路线图,标志着该公司在自动驾驶技术领域迈出了重要一步。该路线图以2026年上市为目标,彰显了Vueron对未来市场趋势的精准把握和对技术创新的坚定…...
Java | Leetcode java题解之第458题可怜的小猪
题目: 题解: class Solution {public int poorPigs(int buckets, int minutesToDie, int minutesToTest) {if (buckets 1) {return 0;}int[][] combinations new int[buckets 1][buckets 1];combinations[0][0] 1;int iterations minutesToTest /…...
怎么不改变视频大小的情况下,修改视频的时长
视频文件太大怎么变小?不影响画质的四种方法 怎么不改变视频大小的情况下,修改视频的时长 截取结尾的时间你可以使用 ffmpeg 来裁剪视频的结尾部分。假设你想去掉视频最后的3秒钟,可以先使用 ffmpeg 获取视频的总时长,然后通过指定一个新的…...
数据结构:AVL树
前言 学习了普通二叉树,发现普通二叉树作用不大,于是我们学习了搜索二叉树,给二叉树新增了搜索、排序、去重等特性, 但是,在极端情况下搜索二叉树会退化成单边树,搜索的时间复杂度达到了O(N),这…...
系统守护者:使用PyCharm与Python实现关键硬件状态的实时监控
目录 前言 系统准备 软件下载与安装 安装相关库 程序准备 主体程序 更改后的程序: 编写.NET程序 前言 在现代生活中,电脑作为核心工具,其性能和稳定性的维护至关重要。为确保电脑高效运行,我们不仅需关注软件优化…...
【工作流引擎集成】springboot+Vue+activiti+mysql带工作流集成系统,直接用于业务开发,流程设计,工作流审批,会签
前言 activiti工作流引擎项目,企业erp、oa、hr、crm等企事业办公系统轻松落地,一套完整并且实际运用在多套项目中的案例,满足日常业务流程审批需求。 一、项目形式 springbootvueactiviti集成了activiti在线编辑器,流行的前后端…...
SumatraPDF一打开就无响应怎么办?
结论:当前安装版不论32位还是64位都会出现问题。使用portable免安装版未发现相关问题。——sumatrapdf可以用于pdf, epub, mobi 等格式文件的浏览。 点击看相关问题和讨论...
棋牌灯控计时计费系统软件免费试用版怎么下载 佳易王计时收银管理系统操作教程
一、前言 【试用版软件下载,可以点击本文章最下方官网卡片】 棋牌灯控计时计费系统软件免费试用版怎么下载 佳易王计时收银管理系统操作教程 棋牌计时计费软件的应用也提升了顾客的服务体验,顾客可以清晰的看到自己的消费时间和费用。增加了消费的透明…...
Excel下拉菜单制作及选项修改
Excel下拉菜单 1、下拉菜单制作2、下拉菜单修改 下拉框(选项菜单)是十分常见的功能。Excel支持下拉框制作,通过预设选项进行菜单选择,可以避免手动输入错误和重复工作,提升数据输入的准确性和效率 1、下拉菜单制作 步…...
树莓派 mysql (兼容mariadb)登陆问题
树莓派 mysql (兼容mariadb)登陆问题 树莓派 MySQL 登陆问题 1 使用默认账号登陆 在首次登陆的情况下,系统默认为root用户授权 sudo su root  2. 使用root用户登…...
Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动
一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...
深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南
🚀 C extern 关键字深度解析:跨文件编程的终极指南 📅 更新时间:2025年6月5日 🏷️ 标签:C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言🔥一、extern 是什么?&…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
CSS设置元素的宽度根据其内容自动调整
width: fit-content 是 CSS 中的一个属性值,用于设置元素的宽度根据其内容自动调整,确保宽度刚好容纳内容而不会超出。 效果对比 默认情况(width: auto): 块级元素(如 <div>)会占满父容器…...
Java毕业设计:WML信息查询与后端信息发布系统开发
JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发,实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构,服务器端使用Java Servlet处理请求,数据库采用MySQL存储信息࿰…...
