简单线性回归分析-基于R语言
本题中,在不含截距的简单线性回归中,用零假设对
统计量进行假设检验。首先,我们使用下面方法生成预测变量x和响应变量y。
set.seed(1)
x <- rnorm(100)
y <- 2*x+rnorm(100)
(a)不含截距的线性回归模型
构建。
(1)建立y关于x的不含截距项的简单线性回归。估计系数及其标准差、t 统计量和与零假设相关的p值。分析这些结果。
这里我们使用下面代码实现没有截距的简单线性回归。
lm(y~x+0)
代码如下:
set.seed(1)
x = rnorm(100)
y = 2*x + rnorm(100)lm.fit = lm(y~x+0)
summary(lm.fit)
输出结果:
Call:
lm(formula = y ~ x + 0)Residuals:Min 1Q Median 3Q Max
-1.9154 -0.6472 -0.1771 0.5056 2.3109 Coefficients:Estimate Std. Error t value Pr(>|t|)
x 1.9939 0.1065 18.73 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1Residual standard error: 0.9586 on 99 degrees of freedom
Multiple R-squared: 0.7798, Adjusted R-squared: 0.7776
F-statistic: 350.7 on 1 and 99 DF, p-value: < 2.2e-16
由输出结果得出:
简单线性回归方程:
其中:
其中:t 统计量的 p 值接近于零,因此拒绝原假设。
(b)参数估计。
(2)建立x关于y的不含截距项的简单线性回归。估计系数及其标准差、t 统计量和与零假设相关的p值。分析这些结果。
lm.fit = lm(x~y+0)
summary(lm.fit)
输出结果:
Call:
lm(formula = x ~ y + 0)Residuals:Min 1Q Median 3Q Max
-0.8699 -0.2368 0.1030 0.2858 0.8938 Coefficients:Estimate Std. Error t value Pr(>|t|)
y 0.39111 0.02089 18.73 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1Residual standard error: 0.4246 on 99 degrees of freedom
Multiple R-squared: 0.7798, Adjusted R-squared: 0.7776
F-statistic: 350.7 on 1 and 99 DF, p-value: < 2.2e-16
由输出结果得出:
简单线性回归方程:
其中:
其中: t 统计量的 p 值接近于零,因此拒绝原假设。
(c)模型结果分析。
(3)(1)和(2)所得到的结果有什么关系?
(1)和(2)的结果反映了同一个线性关系模型,
和
在一定程度上是等价的线性关系模型,他们的 t 值都等于 18.73。
(d)t 统计量检验证明。
(4)对于y对x的不含截距的简单线性回归,零假设: 的 t 统计量具有
的形式,其中
由下式给出,其中:
用代数的方法证明上面式子可以写成如下形式,并在R中进行确认。
证明:
R语言验证:
sqrt(length(x)-1) * sum(x*y)) / (sqrt(sum(x*x) * sum(y*y) - (sum(x*y))^2)
[1] 18.72593
由输出结果得出:这与上面显示的 t 统计量相同。
(e)简单线性回归中y对x回归与x对y回归的 t 统计量相等。
(f1)无截距情况证明:
(5)用(4)的结果证明y对x回归与x对y回归的 t 统计量相等。
如果你把 t(x,y) 换成 t(y,x),那么你会发现 t(x,y) = t(y,x)。
(f2)有截距情况
证明:
(6)在R中证明在截距的回归中,零假设: 的 t 统计量在y对x的回归中和x对y的回归中是一样的。
代码如下:
lm.fit = lm(y~x)
lm.fit2 = lm(x~y)
summary(lm.fit)
输出:
Call:
lm(formula = y ~ x)Residuals:Min 1Q Median 3Q Max
-1.8768 -0.6138 -0.1395 0.5394 2.3462 Coefficients:Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.03769 0.09699 -0.389 0.698
x 1.99894 0.10773 18.556 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1Residual standard error: 0.9628 on 98 degrees of freedom
Multiple R-squared: 0.7784, Adjusted R-squared: 0.7762
F-statistic: 344.3 on 1 and 98 DF, p-value: < 2.2e-16
summary(lm.fit2)
输出:
Call:
lm(formula = x ~ y)Residuals:Min 1Q Median 3Q Max
-0.90848 -0.28101 0.06274 0.24570 0.85736 Coefficients:Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.03880 0.04266 0.91 0.365
y 0.38942 0.02099 18.56 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1Residual standard error: 0.4249 on 98 degrees of freedom
Multiple R-squared: 0.7784, Adjusted R-squared: 0.7762
F-statistic: 344.3 on 1 and 98 DF, p-value: < 2.2e-16
由表格结果,零假设: 的 t 统计量在y对x的回归中为18.556,在x对y的回归中为18.56,说明在截距的回归中,零假设:
的 t 统计量在y对x的回归中和x对y的回归中是一样的。
相关文章:
简单线性回归分析-基于R语言
本题中,在不含截距的简单线性回归中,用零假设对统计量进行假设检验。首先,我们使用下面方法生成预测变量x和响应变量y。 set.seed(1) x <- rnorm(100) y <- 2*xrnorm(100) (a)不含截距的线性回归模型构建。 &…...
上海理工大学《2023年+2019年867自动控制原理真题》 (完整版)
本文内容,全部选自自动化考研联盟的:《上海理工大学867自控考研资料》的真题篇。后续会持续更新更多学校,更多年份的真题,记得关注哦~ 目录 2023年真题 2019年真题 Part1:2023年2019年完整版真题 2023年真题 2019年…...
计算机网络面试题——第三篇
1. TCP超时重传机制是为了解决什么问题 因为TCP是一种面向连接的协议,需要保证数据可靠传输。而在数据传输过程中,由于网络阻塞、链路错误等原因,数据包可能会丢失或者延迟到达目的地。因此,若未在指定时间内收到对方的确认应答&…...
Elasticsearch 开放推理 API 增加了对 Google AI Studio 的支持
作者:来自 Elastic Jeff Vestal 我们很高兴地宣布 Elasticsearch 的开放推理 API 支持 Gemini 开发者 API。使用 Google AI Studio 时,开发者现在可以与 Elasticsearch 索引中的数据进行聊天、运行实验并使用 Google Cloud 的模型(例如 Gemin…...
react-问卷星项目(7)
实战 React表单组件 入门 重点在于change的时候改变state的值,类似vue的双向数据绑定v-model,即数据更新的时候页面同步更新,页面数据更新时数据源也能获得最新的值,只是Vue中设置在data中的属性默认绑定,React中需…...
【git】main|REBASE 2/6
很久没合并代码合并出现冲突,自动进入了 main|REBASE 2/6 的提示: 【git】main|REBASE 2/6 It looks like you’ve encountered several merge conflicts after a git pull operation while a rebase is in progress. Here’s how you can resolve these conflict…...
51单片机的水质检测系统【proteus仿真+程序+报告+原理图+演示视频】
1、主要功能 该系统由AT89C51/STC89C52单片机LCD1602显示模块温度传感器ph传感器浑浊度传感器蓝牙继电器LED、按键和蜂鸣器等模块构成。适用于水质监测系统,含检测和调整水温、浑浊度、ph等相似项目。 可实现功能: 1、LCD1602实时显示水温、水体ph和浑浊度 2、温…...
【python面试宝典7】线程池,模块和包
目录标 题目37:解释一下线程池的工作原理。题目38:举例说明什么情况下会出现KeyError、TypeError、ValueError。题目39:说出下面代码的运行结果。题目40:如何读取大文件,例如内存只有4G,如何读取一个大小为…...
Android input系统原理二
1.inputmanager启动源码分析 在SystemServer.java中构造了 inputmanagerservice的对象,在其构造函数中,最重要的是这个nativeInit函数。 下面是核心代码 inputManager new InputManagerService(context);public InputManagerService(Context context)…...
Oracle登录报错-ORA-01017: invalid username/password;logon denied
接上文:Oracle创建用户报错-ORA-65096: invalid common user or role name 我以为 按照上文在PDB里创建了用户,我以为就可以用PLSQL远程连接了,远程服务器上也安装了对应版本的Oracle客户端,但是我想多了,客户只是新建…...
JavaScript 获取浏览器本地数据的4种方式
JavaScript 获取浏览器本地数据的方式 我们在做Web开发中,客户端存储机制对于在浏览器中持久化数据至关重要。这些机制允许开发者存储用户偏好设置、应用状态以及其他关键信息,从而增强用户体验。本文将介绍几种常用的JavaScript获取浏览器本地数据的方…...
77寸OLED透明触摸屏有哪些应用场景
说到77寸OLED透明触摸屏,那可真是市场营销中的一大亮点,应用场景多到数不清!我这就给你细数几个热门的: 商业展示:这可是77寸OLED透明触摸屏的拿手好戏!在高端零售店铺里,它可以作为陈列窗口&am…...
二分解题的奇技淫巧都有哪些,你还不会吗?
先说一下我为什么要写这篇文章。 “二分“ 查找 or ”二分“ 答案的思想大家想必都知道吧(如果不懂,可以看一下我之前写的一篇文章)。 二分求解 可是呢?思想都会,做题的时候,就懵圈了。 这个题竟然考的是…...
LeetCode-871 最低加油次数
重启力扣每日一题系列! 因为过去两个月里掉粉掉的好严重,我想大抵是因为更新的频率不如上半年了,如果我重启了每日一题系列那岂不是至少是每日一更☝🤓? 也不是每天都更,我有两不更,特难的就不…...
OpenCV-OCR
文章目录 一、OCR技术的基本原理二、OpenCV在OCR识别中的应用1.图像预处理2.文字区域检测3.OCR识别:4.后处理: 三、OCR识别示例代码四、注意事项 OpenCV-OCR主要涉及使用OpenCV库进行光学字符识别(OCR)的技术。OCR技术可以识别图像…...
Linux卸载mysql
一、查看当前安装mysql情况,查找以前是否装有mysql rpm -qa|grep -i mysql二、停止MySQL服务 三、删除mysql库和文件 查找MySQL库 # 查找命令 find / -name mysql# 显示结果 /var/lib/mysql/var/lib/mysql/mysql/usr/lib64/mysql删除对应的mysql目录 rm -rf /v…...
【大语言模型-论文精读】用于医疗领域摘要任务的大型语言模型评估综述
【大语言模型-论文精读】用于医疗领域摘要任务的大型语言模型评估综述 论文信息: 用于医疗领域摘要任务的大型语言模型评估:一篇叙述性综述, 文章是由 Emma Croxford , Yanjun Gao 博士 , Nicholas Pellegrino , Karen K. Wong 等人近期合作…...
图吧工具箱
图吧工具箱202309绿色版自动解压程序R2.exe,永久有效 链接:https://pan.baidu.com/s/1M6TI7Git8bXOzZX_qZ3LJw?pwdzked 提取码:zked...
vue2 + View design 使用inputNumber设置默认值为undefined但展示数据为1且表单校验不通过的原因
文章目录 一、背景二、操作步骤1.复现前的准备工作(1)vue版本和view design 版本(2)创建一个组件(组件中根据类型渲染不同的组件)(3)在list.vue页面中引入组件,传入配置&…...
【SpringSecurity】基本流程
【中文文档: Spring Security 中文文档 :: Spring Security Reference】 【英文文档:Spring Security】 以下内容只是记录springsecurity最简单的一种验证流程,所有配置基本都是默认的配置。 引入依赖 <dependency><groupId>org.springf…...
华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
html-<abbr> 缩写或首字母缩略词
定义与作用 <abbr> 标签用于表示缩写或首字母缩略词,它可以帮助用户更好地理解缩写的含义,尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时,会显示一个提示框。 示例&#x…...
html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码
目录 一、👨🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨…...
Linux离线(zip方式)安装docker
目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1:修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本:CentOS 7 64位 内核版本:3.10.0 相关命令: uname -rcat /etc/os-rele…...
打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用
一、方案背景 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...
