当前位置: 首页 > news >正文

简单线性回归分析-基于R语言

        本题中,在不含截距的简单线性回归中,用零假设H_{0}:\beta=0t统计量进行假设检验。首先,我们使用下面方法生成预测变量x和响应变量y。

set.seed(1)
x <- rnorm(100)
y <- 2*x+rnorm(100)

(a)不含截距的线性回归模型y=\beta x+\epsilon构建。

(1)建立y关于x的不含截距项的简单线性回归。估计系数\hat{\beta}及其标准差、t 统计量和与零假设相关的p值。分析这些结果。

        这里我们使用下面代码实现没有截距的简单线性回归。

lm(y~x+0)

        代码如下:

set.seed(1)
x = rnorm(100)
y = 2*x + rnorm(100)lm.fit = lm(y~x+0)
summary(lm.fit)

        输出结果:

Call:
lm(formula = y ~ x + 0)Residuals:Min      1Q  Median      3Q     Max 
-1.9154 -0.6472 -0.1771  0.5056  2.3109 Coefficients:Estimate Std. Error t value Pr(>|t|)    
x   1.9939     0.1065   18.73   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1Residual standard error: 0.9586 on 99 degrees of freedom
Multiple R-squared:  0.7798,	Adjusted R-squared:  0.7776 
F-statistic: 350.7 on 1 and 99 DF,  p-value: < 2.2e-16

        由输出结果得出:

        简单线性回归方程:                          

\hat{y}=1.9939x

其中:

\hat{\beta}=1.9939

SE=0.1065

t\,value=18.73

其中:t 统计量的 p 值接近于零,因此拒绝原假设。

(b)参数估计。

(2)建立x关于y的不含截距项的简单线性回归。估计系数\hat{\beta}及其标准差、t 统计量和与零假设相关的p值。分析这些结果。

lm.fit = lm(x~y+0)
summary(lm.fit)

        输出结果:

Call:
lm(formula = x ~ y + 0)Residuals:Min      1Q  Median      3Q     Max 
-0.8699 -0.2368  0.1030  0.2858  0.8938 Coefficients:Estimate Std. Error t value Pr(>|t|)    
y  0.39111    0.02089   18.73   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1Residual standard error: 0.4246 on 99 degrees of freedom
Multiple R-squared:  0.7798,	Adjusted R-squared:  0.7776 
F-statistic: 350.7 on 1 and 99 DF,  p-value: < 2.2e-16

        由输出结果得出:

        简单线性回归方程:                       

   \hat{x}=0.3911y

其中:

\hat{\beta}=0.3911

SE=0.0209

t\,value=18.73

其中: t 统计量的 p 值接近于零,因此拒绝原假设。

(c)模型结果分析。

(3)(1)和(2)所得到的结果有什么关系?

        (1)和(2)的结果反映了同一个线性关系模型,y = 2x + \epsilon 和 x = 0.5 * (y - \epsilon)在一定程度上是等价的线性关系模型,他们的 t 值都等于 18.73。

(d)t 统计量检验证明。 

(4)对于y对x的不含截距的简单线性回归,零假设:H_{0}:\beta=0 的 t 统计量具有\frac{\hat{\beta}}{SE(\hat{\beta})}的形式,其中\hat{\beta}由下式给出,其中:

SE(\hat{\beta}) = \sqrt{\frac {\sum{(y_i - x_i \hat{\beta})^2}} {(n-1) \sum{x_i^2}}}

用代数的方法证明上面式子可以写成如下形式,并在R中进行确认。

        证明:

\begin{array}{cc} t = \hat{\beta} / SE(\hat{\beta}) \\ \\ \hat{\beta} = \frac {\sum{x_i y_i}} {\sum{x_i^2}} \\ \\ SE(\hat{\beta}) = \sqrt{\frac {\sum{(y_i - x_i \hat{\beta})^2}} {(n-1) \sum{x_i^2}}} \\ \\ t = {\frac {\sum{x_i y_i}} {\sum{x_i^2}}} {\sqrt{\frac {(n-1) \sum{x_i^2}} {\sum{(y_i - x_i \hat{\beta})^2}}}} \\ \\ = \frac {\sqrt{n-1} \sum{x_i y_i}} {\sqrt{\sum{x_i^2} \sum{(y_i - x_i \hat{\beta})^2}}} \\ \\ = \frac {\sqrt{n-1} \sum{x_i y_i}} {\sqrt{\sum{x_i^2} \sum{(y_i^2 - 2 \hat{\beta} x_i y_i + x_i^2 \hat{\beta}^2)}}} \\ \\ = \frac {\sqrt{n-1} \sum{x_i y_i}} {\sqrt{\sum{x_i^2} \sum{y_i^2} - \sum{x_i^2} \hat{\beta} (2 \sum{x_i y_i} - \hat{\beta} \sum{x_i^2})}} \\ \\ = \frac {\sqrt{n-1} \sum{x_i y_i}} {\sqrt{\sum{x_i^2} \sum{y_i^2} - \sum{x_i y_i} (2 \sum{x_i y_i} - \sum{x_i y_i})}} \\ \\ t = \frac {\sqrt{n-1} \sum{x_i y_i}} {\sqrt{\sum{x_i^2} \sum{y_i^2} - (\sum{x_i y_i})^2 }} \end{array}

         R语言验证:

sqrt(length(x)-1) * sum(x*y)) / (sqrt(sum(x*x) * sum(y*y) - (sum(x*y))^2)
[1] 18.72593

         由输出结果得出:这与上面显示的 t 统计量相同。

(e)简单线性回归中y对x回归与x对y回归的 t 统计量相等。

(f1)无截距情况证明: 

(5)用(4)的结果证明y对x回归与x对y回归的 t 统计量相等。

        如果你把 t(x,y) 换成 t(y,x),那么你会发现 t(x,y) = t(y,x)。

t(x,y) = \frac {\sqrt{n-1} \sum{x_i y_i}} {\sqrt{\sum{x_i^2} \sum{y_i^2} - (\sum{x_i y_i})^2 }}=t(y,x)

(f2)有截距情况y=\beta_{1} x+\beta_{0}+ \epsilon证明: 

 (6)在R中证明在截距的回归中,零假设:H_{0}:\beta_{1}=0 的 t 统计量在y对x的回归中和x对y的回归中是一样的。

        代码如下:

lm.fit = lm(y~x)
lm.fit2 = lm(x~y)
summary(lm.fit)

         输出:

Call:
lm(formula = y ~ x)Residuals:Min      1Q  Median      3Q     Max 
-1.8768 -0.6138 -0.1395  0.5394  2.3462 Coefficients:Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.03769    0.09699  -0.389    0.698    
x            1.99894    0.10773  18.556   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1Residual standard error: 0.9628 on 98 degrees of freedom
Multiple R-squared:  0.7784,	Adjusted R-squared:  0.7762 
F-statistic: 344.3 on 1 and 98 DF,  p-value: < 2.2e-16
summary(lm.fit2)

        输出:

Call:
lm(formula = x ~ y)Residuals:Min       1Q   Median       3Q      Max 
-0.90848 -0.28101  0.06274  0.24570  0.85736 Coefficients:Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.03880    0.04266    0.91    0.365    
y            0.38942    0.02099   18.56   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1Residual standard error: 0.4249 on 98 degrees of freedom
Multiple R-squared:  0.7784,	Adjusted R-squared:  0.7762 
F-statistic: 344.3 on 1 and 98 DF,  p-value: < 2.2e-16

        由表格结果,零假设:H_{0}:\beta_{1}=0 的 t 统计量在y对x的回归中为18.556,在x对y的回归中为18.56,说明在截距的回归中,零假设:H_{0}:\beta_{1}=0 的 t 统计量在y对x的回归中和x对y的回归中是一样的。

相关文章:

简单线性回归分析-基于R语言

本题中&#xff0c;在不含截距的简单线性回归中&#xff0c;用零假设对统计量进行假设检验。首先&#xff0c;我们使用下面方法生成预测变量x和响应变量y。 set.seed(1) x <- rnorm(100) y <- 2*xrnorm(100) &#xff08;a&#xff09;不含截距的线性回归模型构建。 &…...

上海理工大学《2023年+2019年867自动控制原理真题》 (完整版)

本文内容&#xff0c;全部选自自动化考研联盟的&#xff1a;《上海理工大学867自控考研资料》的真题篇。后续会持续更新更多学校&#xff0c;更多年份的真题&#xff0c;记得关注哦~ 目录 2023年真题 2019年真题 Part1&#xff1a;2023年2019年完整版真题 2023年真题 2019年…...

计算机网络面试题——第三篇

1. TCP超时重传机制是为了解决什么问题 因为TCP是一种面向连接的协议&#xff0c;需要保证数据可靠传输。而在数据传输过程中&#xff0c;由于网络阻塞、链路错误等原因&#xff0c;数据包可能会丢失或者延迟到达目的地。因此&#xff0c;若未在指定时间内收到对方的确认应答&…...

Elasticsearch 开放推理 API 增加了对 Google AI Studio 的支持

作者&#xff1a;来自 Elastic Jeff Vestal 我们很高兴地宣布 Elasticsearch 的开放推理 API 支持 Gemini 开发者 API。使用 Google AI Studio 时&#xff0c;开发者现在可以与 Elasticsearch 索引中的数据进行聊天、运行实验并使用 Google Cloud 的模型&#xff08;例如 Gemin…...

react-问卷星项目(7)

实战 React表单组件 入门 重点在于change的时候改变state的值&#xff0c;类似vue的双向数据绑定v-model&#xff0c;即数据更新的时候页面同步更新&#xff0c;页面数据更新时数据源也能获得最新的值&#xff0c;只是Vue中设置在data中的属性默认绑定&#xff0c;React中需…...

【git】main|REBASE 2/6

很久没合并代码合并出现冲突&#xff0c;自动进入了 main|REBASE 2/6 的提示: 【git】main|REBASE 2/6 It looks like you’ve encountered several merge conflicts after a git pull operation while a rebase is in progress. Here’s how you can resolve these conflict…...

51单片机的水质检测系统【proteus仿真+程序+报告+原理图+演示视频】

1、主要功能 该系统由AT89C51/STC89C52单片机LCD1602显示模块温度传感器ph传感器浑浊度传感器蓝牙继电器LED、按键和蜂鸣器等模块构成。适用于水质监测系统&#xff0c;含检测和调整水温、浑浊度、ph等相似项目。 可实现功能: 1、LCD1602实时显示水温、水体ph和浑浊度 2、温…...

【python面试宝典7】线程池,模块和包

目录标 题目37&#xff1a;解释一下线程池的工作原理。题目38&#xff1a;举例说明什么情况下会出现KeyError、TypeError、ValueError。题目39&#xff1a;说出下面代码的运行结果。题目40&#xff1a;如何读取大文件&#xff0c;例如内存只有4G&#xff0c;如何读取一个大小为…...

Android input系统原理二

1.inputmanager启动源码分析 在SystemServer.java中构造了 inputmanagerservice的对象&#xff0c;在其构造函数中&#xff0c;最重要的是这个nativeInit函数。 下面是核心代码 inputManager new InputManagerService(context);public InputManagerService(Context context)…...

Oracle登录报错-ORA-01017: invalid username/password;logon denied

接上文&#xff1a;Oracle创建用户报错-ORA-65096: invalid common user or role name 我以为 按照上文在PDB里创建了用户&#xff0c;我以为就可以用PLSQL远程连接了&#xff0c;远程服务器上也安装了对应版本的Oracle客户端&#xff0c;但是我想多了&#xff0c;客户只是新建…...

JavaScript 获取浏览器本地数据的4种方式

JavaScript 获取浏览器本地数据的方式 我们在做Web开发中&#xff0c;客户端存储机制对于在浏览器中持久化数据至关重要。这些机制允许开发者存储用户偏好设置、应用状态以及其他关键信息&#xff0c;从而增强用户体验。本文将介绍几种常用的JavaScript获取浏览器本地数据的方…...

77寸OLED透明触摸屏有哪些应用场景

说到77寸OLED透明触摸屏&#xff0c;那可真是市场营销中的一大亮点&#xff0c;应用场景多到数不清&#xff01;我这就给你细数几个热门的&#xff1a; 商业展示&#xff1a;这可是77寸OLED透明触摸屏的拿手好戏&#xff01;在高端零售店铺里&#xff0c;它可以作为陈列窗口&am…...

二分解题的奇技淫巧都有哪些,你还不会吗?

先说一下我为什么要写这篇文章。 “二分“ 查找 or ”二分“ 答案的思想大家想必都知道吧&#xff08;如果不懂&#xff0c;可以看一下我之前写的一篇文章&#xff09;。 二分求解 可是呢&#xff1f;思想都会&#xff0c;做题的时候&#xff0c;就懵圈了。 这个题竟然考的是…...

LeetCode-871 最低加油次数

重启力扣每日一题系列&#xff01; 因为过去两个月里掉粉掉的好严重&#xff0c;我想大抵是因为更新的频率不如上半年了&#xff0c;如果我重启了每日一题系列那岂不是至少是每日一更☝&#x1f913;&#xff1f; 也不是每天都更&#xff0c;我有两不更&#xff0c;特难的就不…...

OpenCV-OCR

文章目录 一、OCR技术的基本原理二、OpenCV在OCR识别中的应用1.图像预处理2.文字区域检测3.OCR识别&#xff1a;4.后处理&#xff1a; 三、OCR识别示例代码四、注意事项 OpenCV-OCR主要涉及使用OpenCV库进行光学字符识别&#xff08;OCR&#xff09;的技术。OCR技术可以识别图像…...

Linux卸载mysql

一、查看当前安装mysql情况&#xff0c;查找以前是否装有mysql rpm -qa|grep -i mysql二、停止MySQL服务 三、删除mysql库和文件 查找MySQL库 # 查找命令 find / -name mysql# 显示结果 /var/lib/mysql/var/lib/mysql/mysql/usr/lib64/mysql删除对应的mysql目录 rm -rf /v…...

【大语言模型-论文精读】用于医疗领域摘要任务的大型语言模型评估综述

【大语言模型-论文精读】用于医疗领域摘要任务的大型语言模型评估综述 论文信息&#xff1a; 用于医疗领域摘要任务的大型语言模型评估&#xff1a;一篇叙述性综述&#xff0c; 文章是由 Emma Croxford , Yanjun Gao 博士 , Nicholas Pellegrino , Karen K. Wong 等人近期合作…...

图吧工具箱

图吧工具箱202309绿色版自动解压程序R2.exe&#xff0c;永久有效 链接&#xff1a;https://pan.baidu.com/s/1M6TI7Git8bXOzZX_qZ3LJw?pwdzked 提取码&#xff1a;zked...

vue2 + View design 使用inputNumber设置默认值为undefined但展示数据为1且表单校验不通过的原因

文章目录 一、背景二、操作步骤1.复现前的准备工作&#xff08;1&#xff09;vue版本和view design 版本&#xff08;2&#xff09;创建一个组件&#xff08;组件中根据类型渲染不同的组件&#xff09;&#xff08;3&#xff09;在list.vue页面中引入组件&#xff0c;传入配置&…...

【SpringSecurity】基本流程

【中文文档: Spring Security 中文文档 :: Spring Security Reference】 【英文文档&#xff1a;Spring Security】 以下内容只是记录springsecurity最简单的一种验证流程&#xff0c;所有配置基本都是默认的配置。 引入依赖 <dependency><groupId>org.springf…...

centos 7 部署awstats 网站访问检测

一、基础环境准备&#xff08;两种安装方式都要做&#xff09; bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

关于 WASM:1. WASM 基础原理

一、WASM 简介 1.1 WebAssembly 是什么&#xff1f; WebAssembly&#xff08;WASM&#xff09; 是一种能在现代浏览器中高效运行的二进制指令格式&#xff0c;它不是传统的编程语言&#xff0c;而是一种 低级字节码格式&#xff0c;可由高级语言&#xff08;如 C、C、Rust&am…...

安卓基础(aar)

重新设置java21的环境&#xff0c;临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的&#xff1a; MyApp/ ├── app/ …...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

《C++ 模板》

目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板&#xff0c;就像一个模具&#xff0c;里面可以将不同类型的材料做成一个形状&#xff0c;其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式&#xff1a;templa…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称&#xff1a;Apache Flink REST API 任意文件读取漏洞CVE编号&#xff1a;CVE-2020-17519CVSS评分&#xff1a;7.5影响版本&#xff1a;Apache Flink 1.11.0、1.11.1、1.11.2修复版本&#xff1a;≥ 1.11.3 或 ≥ 1.12.0漏洞类型&#xff1a;路径遍历&#x…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式&#xff08;本地调用&#xff09; SSE模式&#xff08;远程调用&#xff09; 4. 注册工具提…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...

【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error

在前端开发中&#xff0c;JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作&#xff08;如 Promise、async/await 等&#xff09;&#xff0c;开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝&#xff08;r…...