当前位置: 首页 > news >正文

微信步数C++

题目:

 


样例解释:

【样例 #1 解释】

从 (1,1) 出发将走 2 步,从 (1,2) 出发将走 4 步,从 (1,3) 出发将走 4 步。
从 (2,1) 出发将走 2 步,从 (2,2) 出发将走 3 步,从 (2,3) 出发将走 3 步。
从 (3,1) 出发将走 1 步,从 (3,2) 出发将走 1 步,从 (3,3) 出发将走 1 步。
共计 21 步。

 


思路:

先考虑O(nkw)O(nkw)的30分暴力。

显然,每个维度上走过的位置是一个区间。

只要走的步数确定,那么这个区间关于起点位置的相对位置也就确定了。

只要先算出每个循环向左/右所走的最远距离,以及一个循环的移位即可。

这样,考虑一个算法:

枚举走了多少步结束,并算出贡献(就是算出满足条件的起点数目)。

先枚举走出区域的上一步,走到了循环节中的哪个位置,以及走了多少循环节。

由于不能走出区域,于是可以根据每个维度的区间来算出这个维度的起点所在区间。

设下一步修改的维度为cc。根据对应的dd,容易算出这个维度的起点位置。

那么,这个位置必须在起点区间内。

满足这个条件的基础上,把其他维度的起点区间长度相乘就是起点数目。

考虑优化:

这个算法的主要瓶颈在于对循环节数的枚举。

设走过的循环节数目为xx。

那么,不难发现,每个维度的区间的相对位置(即左右端点与起点的距离)是关于xx的一次函数。

由于这一维度的方案数等于w+1w+1减去区间长度,因此这也是关于xx的一次函数。

根据这个区间长度为正数,可以得出xx的取值范围。

同时,维度cc的起点位置也是关于xx的一次函数。

根据这个位置必须在起点区间内部,进一步缩小xx的取值范围。

这样,答案就是对于每个xx,这些一次函数在xx处的值的乘积的和。

暴力进行多项式乘法并用自然数幂前缀和即可。

时间复杂度O(nk2)O(nk2)。

注意这个写法,可能要对x=0x=0进行特判。

 

 


代码:

#include <stdio.h>
#define inf 1999999999
#define md 1000000007
#define min(a,b) a<b?a:b
#define max(a,b) a>b?a:b
int az[12],al[12],ar[12],w[12],aa[500010][12];
int B[12],C[500010],D[500010],la[500010][12],ra[500010][12];
int ksm(int a,int b) {int jg=1;while(b>0) {if(b&1)jg=1ll*jg*a%md;a=1ll*a*a%md;b=(b>>1);}return jg;
}
int Cc[12][12],xs[12][12];
void GetB(int k)//伯努利数 
{B[0]=1;for (int i=1;i<=k+1;i++) {for (int j=0;j<=i;j++) {if(j==0||j==i)Cc[i][j]=1; else Cc[i][j]=(Cc[i-1][j]+Cc[i-1][j-1])%md;}}for (int i=1;i<=k;i++) {int h=0;for (int j=0;j<i;j++)h=(h+1ll*Cc[i+1][j]*B[j])%md;B[i]=1ll*(md-h)*ksm(i+1,md-2)%md;}for (int i=1;i<=k;i++) {int ny=ksm(i+1,md-2);for (int j=0;j<=i;j++)xs[i][i+1-j]=1ll*Cc[i+1][j]*B[j]%md*ny%md;}
}
struct SLi//一次函数 
{int k,b;SLi() {}SLi(int K,int B) {k=K;b=B;}SLi(int Z) {k=0;b=Z;}
};
SLi operator-(const SLi &x,const SLi &y) {return SLi(x.k-y.k,x.b-y.b);
}
int Sum(int k,int n) {if(k==0)return n+1;int jg=0;for (int i=0,j=1;i<=k+1;i++) {jg=(jg+1ll*j*xs[k][i])%md;j=1ll*j*(n+1)%md;}return jg;
}
struct DXS//多项式 
{int sz[12],n;void operator=(const DXS &a) {n=a.n;for (int i=0;i<=n;i++)sz[i]=a.sz[i];}void clear() {for (int i=1;i<=10;i++)sz[i]=0;sz[0]=1;n=0;}int sum(int l,int r) {int ans=0;for (int i=0;i<=n;i++) {int t=(Sum(i,r)-Sum(i,l-1)+md)%md;ans=(ans+1ll*sz[i]*t)%md;}return ans;}
};
DXS operator*(const DXS&x,const SLi&y) {DXS rt;rt.n=x.n+1;rt.sz[rt.n]=0;for (int i=0;i<=x.n;i++)rt.sz[i]=1ll*y.b*x.sz[i]%md;for (int i=0;i<=x.n;i++)rt.sz[i+1]=(rt.sz[i+1]+1ll*y.k*x.sz[i])%md;return rt;
}
struct SQj//维护区间 
{int l,r;SQj() {}SQj(int L,int R) {l=L;r=R;}
};
SQj jiao(const SQj&a,const SQj&b) {return SQj(max(a.l,b.l),min(a.r,b.r));
}
int floor(int,int);
int ceil(int x,int y) {if(y<0)x=-x,y=-y;if(x>=0)return (x+y-1)/y;return -floor(-x,y);
}
int floor(int x,int y) {if(y<0)x=-x,y=-y;if(x>=0)return x/y;return -ceil(-x,y);
}
SQj Less(SLi a,SLi b) {int x=a.k-b.k,y=b.b-a.b;if(x==0)return y>=0?SQj(-inf,inf):SQj(inf,-inf);if(x>0)return SQj(-inf,floor(y,x));return SQj(ceil(y,x),inf);
}
SQj More(SLi a,SLi b) {int x=a.k-b.k,y=b.b-a.b;if(x==0)return y<=0?SQj(-inf,inf):SQj(inf,-inf);if(x>0)return SQj(ceil(y,x),inf);return SQj(-inf,floor(y,x));
}
int cal0(int n,int i,int k) {int l[12],r[12],jg=1;for (int c=1;c<=k;c++)l[c]=la[i][c],r[c]=ra[i][c];for (int c=1;c<=k;c++) {int zl=1-l[c],zr=w[c]-r[c];if(c!=C[(i+1)%n]) {int s=zr-zl+1;if(s<0)s=0;jg=1ll*jg*s%md;} else {int t=aa[i][c],s=0;if(D[(i+1)%n]==1) {int o=w[c]-t;if(o>=zl&&o<=zr)s=1;} else {int o=1-t;if(o>=zl&&o<=zr)s=1;}jg=1ll*jg*s%md;}}return 1ll*(i+2)*jg%md;
}
int main() {int n,k;scanf("%d%d",&n,&k);GetB(k);for (int i=1;i<=k;i++)scanf("%d",&w[i]);for (int i=0;i<n;i++) {scanf("%d%d",&C[i],&D[i]);if(i>0) {for (int j=1;j<=k;j++)aa[i][j]=aa[i-1][j];}aa[i][C[i]]+=D[i];//循环节中某一前缀的偏移量az[C[i]]+=D[i];if(az[C[i]]<al[C[i]])//最左移位al[C[i]]=az[C[i]];if(az[C[i]]>ar[C[i]])//最右移位ar[C[i]]=az[C[i]];for (int j=1;j<=k;j++) {la[i][j]=al[j];ra[i][j]=ar[j];}}bool zd=false;for (int i=1;i<=k;i++) {if(az[i]!=0||ar[i]-al[i]>=w[i]) {zd=true;break;}}if(!zd)//走不出去 {printf("-1");return 0;}int ans=1;for (int i=1;i<=k;i++) {if(i!=C[0])ans=1ll*ans*w[i]%md;}for (int i=0;i<n;i++) {ans=(ans+cal0(n,i,k))%md;//特殊处理x=0的情况SLi l[12],r[12],d[12];for (int c=1;c<=k;c++)//算出对应维度的一次函数 {if(az[c]>=0) {l[c]=al[c];int t=az[c]+ra[i][c];if(ar[c]>t)t=ar[c];r[c]=SLi(az[c],t-az[c]);} else {r[c]=ar[c];int t=az[c]+la[i][c];if(al[c]<t)t=al[c];l[c]=SLi(az[c],t-az[c]);}d[c]=r[c]-l[c];}int tc=C[(i+1)%n];SLi o;SLi tz=SLi(az[tc],aa[i][tc]);if(D[(i+1)%n]==1)o=w[tc]-tz; else o=1-tz;SLi zl=1-l[tc],zr=w[tc]-r[tc];//tc这一维度起点的范围SQj qj=jiao(More(o,zl),Less(o,zr));//tc这一维度起点是确定的,需要满足条件for (int i=1;i<=k;i++) {d[i]=w[i]-d[i];qj=jiao(qj,More(d[i],1));//方案数>0}qj=jiao(qj,SQj(1,inf));if(qj.l>qj.r)continue;DXS ji;ji.clear();ji=ji*SLi(n,i+2);for (int c=1;c<=k;c++)//对应维度相乘 {if(c!=tc)ji=ji*d[c];}ans=(ans+ji.sum(qj.l,qj.r))%md;}printf("%d",(ans%md+md)%md);return 0;
}

相关文章:

微信步数C++

题目&#xff1a; 样例解释&#xff1a; 【样例 #1 解释】 从 (1,1) 出发将走 2 步&#xff0c;从 (1,2) 出发将走 4 步&#xff0c;从 (1,3) 出发将走 4 步。 从 (2,1) 出发将走 2 步&#xff0c;从 (2,2) 出发将走 3 步&#xff0c;从 (2,3) 出发将走 3 步。 从 (3,1) 出发将…...

AI写作工具大比拼:揭秘Claude的神秘魅力以及如何订阅Claude

AI写作困境与Claude的惊喜表现 最近有很多朋友在吐槽AI写的文章不太行&#xff0c;我一看他的要求写的很清楚&#xff0c;已经把提示词都用到位了&#xff0c;例如&#xff1a;写作背景、写作要求等&#xff0c;都有具体写出来。但文章阅读起来就是欠缺点啥。 你们有没有遇到…...

秋招内推2025-招联金融

【投递方式】 直接扫下方二维码&#xff0c;或点击内推官网https://wecruit.hotjob.cn/SU61025e262f9d247b98e0a2c2/mc/position/campus&#xff0c;使用内推码 igcefb 投递&#xff09; 【招聘岗位】 后台开发 前端开发 数据开发 数据运营 算法开发 技术运维 软件测试 产品策…...

GOM引擎启动后M2提示Invalid filename报错的解决办法

在架设一个GOM引擎版本的时候&#xff0c;启动M2就提示Invalid filename&#xff0c;之后的网关就没有办法再启动了&#xff0c;研究了半天也终于是弄好了&#xff0c;其实也简单&#xff0c;就是路径设置的不对&#xff0c;所以无法完成启动&#xff0c;很多人以为在控制台设置…...

CPU 多级缓存

在多线程并发场景下&#xff0c;普通的累加很可能错的 CPU 多级缓存 Main Memory : 主存Cache : 高速缓存&#xff0c;数据的读取存储都经过此高速缓存CPU Core : CPU 核心Bus : 系统总线 CPU Core 和 Cache 通过快速通道连接&#xff0c;Main menory 和 Cache 都挂载到 Bus 上…...

Chrome浏览器调用ActiveX控件--allWebOffice控件功能介绍

allWebOffice控件概述 allWebOffice控件能够实现在浏览器窗口中在线操作文档的应用&#xff08;阅读、编辑、保存等&#xff09;&#xff0c;支持编辑文档时保留修改痕迹&#xff0c;支持书签位置内容动态填充&#xff0c;支持公文套红&#xff0c;支持文档保护控制等诸多办公功…...

JavaScript-下篇

上篇我们学习了&#xff0c;一些基础语法和函数&#xff0c;现在我们学习下篇&#xff0c;主要包括,对象和事件。而对象又包括&#xff0c;数组Arrays&#xff0c;String字符串&#xff0c;BOM&#xff0c;DOM等 JS对象 Arrays数组 数组是一种特殊的对象&#xff0c;用于存储…...

STM32-HAL库驱动DHT11温湿度传感器 --2024.9.28

目录 一、教程简介 二、驱动原理讲解 &#xff08;一&#xff09;通信4步骤 &#xff08;二&#xff09;传感器数据解析 三、CubeMX生成底层代码 &#xff08;一&#xff09;基础配置 &#xff08;二&#xff09;配置DHT11的驱动引脚 &#xff08;三&#xff09;配置串口 四…...

使用C语言获取iostat中的await值的方法和方案

使用C语言获取iostat中的await值的方法和方案 1. 准备工作2. 调用iostat命令并获取输出3. 解析iostat输出4. 完整实现和错误处理5. 注意事项在Linux系统中,iostat命令是sysstat软件包的一部分,用于监控系统的CPU、网卡、tty设备、磁盘、CD-ROM等设备的活动情况和负载信息。其…...

阿里云域名解析和备案

文章目录 1、域名解析2、新手引导3、ICP备案 1、域名解析 2、新手引导 3、ICP备案...

gitee公钥设置、创建库及使用

简介 一、如何安装git 使用gitee&#xff0c;需要先安装git工具。 工具网站地址&#xff1a;https://git-scm.com/downloads 安装完成后&#xff0c;在terminal命令行输入git --version可以查看到git的版本。 二、登录gitee 我们先在 gitee上注册账号并登录。gitee官网&#x…...

融媒体服务中PBO进行多重采样抗锯齿(MSAA)

如果不理解pbo 那先去了解概念&#xff0c;在此不再解释&#xff0c;这是我为了做融合服务器viewpointserver做的一部分工作&#xff0c;融合服务器的功能是将三维和流媒体&#xff0c;AI融合在一起&#xff0c;viewpointserver会直接读取三维工程的文件&#xff0c;同时融合rt…...

说说BPMN概念及应用

BPMN&#xff08;Business Process Modeling and Notation&#xff09;即业务流程建模与标注&#xff0c;是一种由OMG&#xff08;Object Management Group&#xff0c;对象管理组织&#xff09;制定的业务流程建模语言。以下是对BPMN标准的详细解释&#xff1a; 一、BPMN的起…...

【微服务】初识(day1)

基础概念 集群 集群是将一个系统完整的部署到多个服务器&#xff0c;每个服务器提供系统的所有服务&#xff0c;多个服务器可以通过负载均衡完成任务&#xff0c;每个服务器都可以称为集群的节点。 分布式 分布式是将一个系统拆分为多个子系统&#xff0c;多个子系统部署在…...

15分钟学 Python 第40天:Python 爬虫入门(六)第一篇

Day40 &#xff1a;Python 爬取豆瓣网前一百的电影信息 1. 项目背景 在这个项目中&#xff0c;我们将学习如何利用 Python 爬虫技术从豆瓣网抓取前一百部电影的信息。通过这一练习&#xff0c;您将掌握网页抓取的基本流程&#xff0c;包括发送请求、解析HTML、存储数据等核心…...

分层解耦-05.IOCDI-DI详解

一.依赖注入的注解 在我们的项目中&#xff0c;EmpService的实现类有两个&#xff0c;分别是EmpServiceA和EmpServiceB。这两个实现类都加上Service注解。我们运行程序&#xff0c;就会报错。 这是因为我们依赖注入的注解Autowired默认是按照类型来寻找bean对象的进行依赖注入…...

HCIP-HarmonyOS Application Developer 习题(六)

&#xff08;多选&#xff09;1、Harmonyos多窗口交互能力提供了以下哪几种交互方式? A. 平行视界 B.全局消息通知 C.分屏 D.悬浮窗 答案&#xff1a;ACD 分析&#xff1a;系统提供了悬浮窗、分屏、平行视界三种多窗口交互&#xff0c;为用户在大屏幕设备上的多任务并行、便捷…...

【电路基础 · 3】实际电压源 实际电流源;两种电源的等效情况;戴维南模型 诺顿模型(自用)

总览 1.实际电源的两种模型和它们的等效变换 2.两种电源的等效情况 3.戴维南模型 && 诺顿模型 一、实际电源的两种模型和它们的等效变换 1.实际电压源 实际电压源不允许短路。因为它的内阻太小&#xff0c;如果短路&#xff0c;电流很大&#xff0c;可能会烧毁电源…...

案例-猜数字游戏

文章目录 效果展示初始画面演示视频 代码区 效果展示 初始画面 演示视频 猜数字游戏 代码区 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width,…...

POI数据的处理与分析

POI概念 POI&#xff08;Point of Interest&#xff0c;兴趣点&#xff09;数据指的是地理空间数据中的一类&#xff0c;表示某一具体地点或位置的信息。通常&#xff0c;这些数据包含位置坐标&#xff08;经纬度&#xff09;、名称、地址、类别和其他相关信息。POI 数据广泛应…...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了&#xff1a;一行…...

2024年赣州旅游投资集团社会招聘笔试真

2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...

麒麟系统使用-进行.NET开发

文章目录 前言一、搭建dotnet环境1.获取相关资源2.配置dotnet 二、使用dotnet三、其他说明总结 前言 麒麟系统的内核是基于linux的&#xff0c;如果需要进行.NET开发&#xff0c;则需要安装特定的应用。由于NET Framework 是仅适用于 Windows 版本的 .NET&#xff0c;所以要进…...

【大模型】RankRAG:基于大模型的上下文排序与检索增强生成的统一框架

文章目录 A 论文出处B 背景B.1 背景介绍B.2 问题提出B.3 创新点 C 模型结构C.1 指令微调阶段C.2 排名与生成的总和指令微调阶段C.3 RankRAG推理&#xff1a;检索-重排-生成 D 实验设计E 个人总结 A 论文出处 论文题目&#xff1a;RankRAG&#xff1a;Unifying Context Ranking…...

Java中栈的多种实现类详解

Java中栈的多种实现类详解&#xff1a;Stack、LinkedList与ArrayDeque全方位对比 前言一、Stack类——Java最早的栈实现1.1 Stack类简介1.2 常用方法1.3 优缺点分析 二、LinkedList类——灵活的双端链表2.1 LinkedList类简介2.2 常用方法2.3 优缺点分析 三、ArrayDeque类——高…...

Qt Quick Controls模块功能及架构

Qt Quick Controls是Qt Quick的一个附加模块&#xff0c;提供了一套用于构建完整用户界面的UI控件。在Qt 6.0中&#xff0c;这个模块经历了重大重构和改进。 一、主要功能和特点 1. 架构重构 完全重写了底层架构&#xff0c;与Qt Quick更紧密集成 移除了对Qt Widgets的依赖&…...