当前位置: 首页 > news >正文

数据结构——栈与队列的实现(全码)

一  栈的概念

        栈是一种特殊的线性表,栈内数据遵循先进后出(LIFO)的原则,对于栈,只能在同一侧进行入栈和出栈操作。

入栈操作和出栈操作是在栈的同一侧进行的,如图示:

对于栈这种数据类型,我们可以采用链表或者数组来实现,但是我们一般采取数组的形式进行实现。

 二  栈的实现

1.栈的声明

对于一个用数组形式来实现的栈来说,我们需要声明:

指向栈的有效地址指针,栈顶(栈的有效空间)top,  栈的最大容量capacity

typedef int TypeData;
typedef struct Stack {TypeData* a;int top;      //有效个数int capacity;  //最大空间
}ST;

这里top为什么时栈的有效个数呢?因为我们让top指向了当前数组存在有效数据的最大下标+1的位置,这样top更加直观的表达当前栈内的元素

 2.栈的初始化

在一个栈创建后,需要对栈进行初始化后才能进行使用,对于栈的初始状态:

指向数组首元素地址的指针为NULL

栈初始的最大容量为0

栈顶top的指向为数组为0的下标,也就是当前栈的有效数据个数为0

void STInit(ST* ps)
{	assert(ps);ps->a = NULL;ps->capacity = ps->top = 0;
}

初始化后栈的图示如下: 

 

3.栈的入栈

        当我们往栈中入数据时,我们不能一昧的往里面入数据,在每次入数据前需要考虑当前栈的容量是否已经满了,如果当前栈的容量已满,我们需要先将栈的最大容量扩充后再进行入栈操作。

在扩充最大容量操作时,我们应当使用realloc函数,因为我们需要保留原本栈中存放的数据

在空栈时入栈,那么第一次扩充的栈的大小是4个数据类型空间(也可以是8个,10个等)

如果栈中本来就有数据,那么当栈满时,新栈的最大容量为旧栈的两倍(或整数倍)

void STPush(ST* ps, TypeData x)
{assert(ps);//检查空间是否足够if (ps->capacity == ps->top) {int newcapacity = ps->capacity == 0 ? 4 : ps->capacity * 2;//创建newcapacity个空间ST* tmp = (ST*)realloc(ps->a, sizeof(TypeData) * newcapacity);//如果开辟空间失败if (tmp == NULL) {perror("realloc");exit(-1);}ps->capacity = newcapacity;ps->a = tmp;}//空间足够ps->a[ps->top++] = x;
}

 

 

 4.栈的出栈前提

当进行出栈操作时,需要判定栈是否为空,如果栈为空(也就是没有数据),则无法出栈。

        当栈顶为0时,说明当前栈中无数据,返回true,否则返回false 

bool StackEmpty(ST* ps)
{assert(ps);return ps->top == 0;
}

 

 

5.栈的出栈

在栈的出栈操作前需要判断当前栈中是否存有数据,否则不能进行出栈操作

通过栈顶指针-1即可完成出栈操作

//出栈
void STPop(ST* ps)
{assert(ps);assert(!StackEmpty(ps));--ps->top;
}

 

 

6.取栈顶元素

    取栈顶元素前和出栈操作一样,需要判断当前栈是否为空,否则无法取栈顶元素

    取栈顶元素返回的是top-1位置的数据,并非top位置

TypeData STTop(ST* ps)
{assert(ps);assert(!StackEmpty(ps));//栈为空栈时无法取栈顶元素return ps->a[ps->top - 1];
}

 

 

 

7.获取栈的有效个数

    直接返回top即可,因为top不仅代表了栈顶,还代表了当前栈中的有效个数

//获取栈中有效元素个数
int STSize(ST* ps)
{assert(ps);return ps->top;
}

8.栈的销毁

栈的销毁和顺序表基本一致:

void STDestroy(ST* ps)
{assert(ps);if (ps->a)free(ps->a);ps->a = NULL;ps->top = ps->capacity = 0;
}

 

 9.栈的全码

#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>
typedef int TypeData;
typedef struct Stack {TypeData* a;int top;      //有效个数int capacity;  //最大空间
}ST;//初始化
void STInit(ST* ps)
{	assert(ps);ps->a = NULL;ps->capacity = ps->top = 0;
}//销毁
void STDestroy(ST* ps)
{assert(ps);if (ps->a)free(ps->a);ps->a = NULL;ps->top = ps->capacity = 0;
}//入栈
void STPush(ST* ps, TypeData x)
{assert(ps);//检查空间是否足够if (ps->capacity == ps->top) {int newcapacity = ps->capacity == 0 ? 4 : ps->capacity * 2;//创建newcapacity个空间ST* tmp = (ST*)realloc(ps->a, sizeof(TypeData) * newcapacity);//如果开辟空间失败if (tmp == NULL) {perror("realloc");exit(-1);}ps->capacity = newcapacity;ps->a = tmp;}//空间足够ps->a[ps->top++] = x;
}//检查是否为空栈
bool StackEmpty(ST* ps)
{assert(ps);return ps->top == 0;
}//出栈
void STPop(ST* ps)
{assert(ps);assert(!StackEmpty(ps));--ps->top;
}//取栈顶元素
TypeData STTop(ST* ps)
{assert(ps);assert(!StackEmpty(ps));//栈为空栈时无法取栈顶元素return ps->a[ps->top - 1];
}//获取栈中有效元素个数
int STSize(ST* ps)
{assert(ps);return ps->top;
}
int main(){return 0;}

三  队列的概念

队列是一种只允许在一侧入数据操作,另一侧出数据操作的线性表,具有先进先出的的原则

在入数据操作的一端称作队尾,在出数据的一端称作队头

而对于队列的底层,我们可以选择数组或者链表来实现,在这里我们使用链表来实现,因为采用数组来实现是,在出队操作后数组需要相继往前移动一位,这样才能使后面的的数据接着出队,因此采用数组的话在出队操作时效率会比链表低

队列的内部数据用链表来表示:

 

1.队列的声明

在 上面队列的概念中我们了解到,队列的底层由链表来实现,而队列有队头和队尾,因此队列的结构体声明有些许不同,可以理解为队列由两部分组成:链表和队列本身,因此我们需要声明两个结构体:

//队列的在链表的基础上实现,所以结构体有两个,一个是链表结点(头删尾插)
typedef int TypeData;//链表结点结构声明
typedef struct QueueNode {TypeData data;struct QueueNode* next;
}Node;
//队列本身的声明
typedef struct Queue {struct QueueNode* phead;//队头struct QueueNode* ptail;//队尾int size;//记录队列的元素个数,每次入队+1,出队-1
}Queue;

2.队列的初始化

当我们创建一个队列时,队列中是不存在数据的,也就是不存在链表结点,因此我们在初始化时不需要初始化链表结点结构体:

//队列初始化
void QueueInit(Queue* ps) {assert(ps);ps->phead = ps->ptail = NULL;ps->size = 0;
}

初始化时,队尾指针和队头指针应当为空,因为此时队列中还不存在数据(结点)

初始化后图示:

 

3.队列的入队 

在队列的入队操作中,其实是对队列中链表的尾插操作

入队步骤:

1)创建新结点

2)在结点插入时需要判断当前队列是否为空(也就是链表是否为空),如果队列为空,那么新创建的结点就是链表的头结点,此时队尾指针和队头指针都指向头结点

3)如果当前队列不为空,那么直接在原队列上进行尾插,即在链表进行尾插,原链表最后一个结点被尾指针指向,所以原最后一个结点的指针指向新结点,原尾指针更新指向新结点

4)记录队列元素个数的size +1

//队列的入队,尾插
void QueuePush(Queue* ps, TypeData x) {//申请新结点Node* newNode = (Node*)malloc(sizeof(Node));if (newNode == NULL) {perror("malloc");exit(1);}newNode->data = x;newNode->next = NULL;//两种情况,队列为空与不为空if (ps->phead == NULL) {ps->phead = ps->ptail = newNode;}else {//队列不为空ps->ptail->next = newNode;ps->ptail = newNode;}ps->size++;
}

4.队列的出队前提

队列的出队与栈一样,在出队前对队列判断当前队列是否为空,只有队列非空的时候才能进行出队操作

//判断队列是否为空
bool QueueEmpty(Queue* ps) {//头节点为空证明队列为空return ps->phead == NULL;
}

 5.队列的出队

对于队列的出队操作,其实就是链表的头删

       先记录下队头结点的下一个结点Next,再释放队头结点并将队头结点指向队头结点的下一个结点Next,最后再将记录队列元素size成员-1

//队列出队,头删
void QueuePop(Queue* ps) {assert(ps);assert(!QueueEmpty(ps));Queue* Next = ps->phead->next;free(ps->phead);ps->phead = Next;ps->size--;
}

但是这样子其实考虑的并不完全,如果队列中只有一个结点,队尾指针和队头 指针都指向该结点,那么 Next的指向为NULL,当结点释放后,队头指针指向Next达到了置空的作用,但是队尾指针却没有置空,那么此时队尾指针就成为了野指针,这是不被允许的!

因此我们需要分两种情况进行讨论:队列只有一个结点和队列有多个结点

怎样判断队列是否只有一个结点:当队头指针和队尾指针的指向相同时

//队列出队,头删
void QueuePop(Queue* ps) {assert(ps);assert(!QueueEmpty(ps));//如果队列只有一个结点if (ps->phead == ps->ptail) {free(ps->phead);ps->phead = ps->ptail = NULL;}else {//队列有多个结点Queue* Next = ps->phead->next;free(ps->phead);ps->phead = Next;}ps->size--;
}

6.取队头元素

    无需多言,队头指针指向的数据就是队头元素,直接返回即可

//取队头元素
TypeData QueueFront(Queue* ps) {assert(ps);assert(!QueueEmpty(ps));return ps->phead->data;
}

7.取队尾元素

    无需多言,队尾指针指向的元素就是队尾元素,直接返回即可

//取队尾元素
TypeData QueueBack(Queue* ps) {assert(ps);assert(!QueueEmpty(ps));return ps->ptail->data;
}

 8.队列的销毁

利用指针del指向要删除的结点,指针Next记录删除结点的下一个结点,当del为空时证明队列已经销毁,再将队列所有的指针置空,队列有效个数置0

//队列的销毁
void DestoryQueue(Queue* ps) {assert(ps);assert(!QueueEmpty(ps));Node* del = ps->phead;while (del) {Queue* Next = del->next;free(del);del = Next;}ps->phead = ps->ptail = del = NULL;ps->size = 0;
}

9.获取队列的有效元素个数

    直接返回结构体成员变量size即可

TypeData QueueNums(Queue* ps) {return ps->size;
}

10.队列的全码

#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>//队列的在链表的基础上实现,所以结构体有两个,一个是链表结点(头删尾插)
typedef int TypeData;//链表结点结构声明
typedef struct QueueNode {TypeData data;struct QueueNode* next;
}Node;typedef struct Queue {struct QueueNode* phead;struct QueueNode* ptail;int size;
}Queue;//队列初始化
void QueueInit(Queue* ps) {assert(ps);ps->phead = ps->ptail = NULL;ps->size = 0;
}//队列的入队,尾插
void QueuePush(Queue* ps, TypeData x) {//申请新结点Node* newNode = (Node*)malloc(sizeof(Node));if (newNode == NULL) {perror("malloc");exit(1);}newNode->data = x;newNode->next = NULL;//两种情况,队列为空与不为空if (ps->phead == NULL) {ps->phead = ps->ptail = newNode;}else {//队列不为空ps->ptail->next = newNode;ps->ptail = newNode;}ps->size++;
}//判断队列是否为空
bool QueueEmpty(Queue* ps) {//头节点为空证明队列为空return ps->phead == NULL;
}//队列出队,头删
void QueuePop(Queue* ps) {assert(ps);assert(!QueueEmpty(ps));//如果队列只有一个结点if (ps->phead == ps->ptail) {free(ps->phead);ps->phead = ps->ptail = NULL;}else {//队列有多个结点Queue* Next = ps->phead->next;free(ps->phead);ps->phead = Next;}ps->size--;
}//取队头元素
TypeData QueueFront(Queue* ps) {assert(ps);assert(!QueueEmpty(ps));return ps->phead->data;
}//取队尾元素
TypeData QueueBack(Queue* ps) {assert(ps);assert(!QueueEmpty(ps));return ps->ptail->data;
}//队列的销毁
void DestoryQueue(Queue* ps) {assert(ps);assert(!QueueEmpty(ps));Node* del = ps->phead;while (del) {Queue* Next = del->next;free(del);del = Next;}ps->phead = ps->ptail = del = NULL;ps->size = 0;
}TypeData QueueNums(Queue* ps) {return ps->size;
}

相关文章:

数据结构——栈与队列的实现(全码)

一 栈的概念 栈是一种特殊的线性表&#xff0c;栈内数据遵循先进后出(LIFO)的原则&#xff0c;对于栈&#xff0c;只能在同一侧进行入栈和出栈操作。 入栈操作和出栈操作是在栈的同一侧进行的&#xff0c;如图示&#xff1a; 对于栈这种数据类型&#xff0c;我们可以采用链表或…...

MacOS编译和安装Poco库的方法

1.从官网git下载最新的poco源代码 在/usr/local路径下创建Poco文件夹&#xff0c;克隆Poco源代码 sudo git clone -b poco-1.13.3-release https://github.com/pocoproject/poco.git2.等了一会后&#xff0c;报错啦&#xff01;&#xff01;&#xff01; error: RPC failed…...

医院管理新境界:Spring Boot技术突破

6系统测试 6.1概念和意义 测试的定义&#xff1a;程序测试是为了发现错误而执行程序的过程。测试(Testing)的任务与目的可以描述为&#xff1a; 目的&#xff1a;发现程序的错误&#xff1b; 任务&#xff1a;通过在计算机上执行程序&#xff0c;暴露程序中潜在的错误。 另一个…...

Docker 环境下 MinIO 监控实战:通过 Prometheus 实现集群与桶级别性能监控

Docker 环境下 MinIO 监控实战&#xff1a;通过 Prometheus 实现集群与桶级别性能监控 文章目录 Docker 环境下 MinIO 监控实战&#xff1a;通过 Prometheus 实现集群与桶级别性能监控一 获取 prometheus 配置二 配置的内容三 prometheus 的配置1&#xff09;集群级别的指标2&a…...

渗透测试入门学习——使用python脚本自动跟踪csrf_token实现对网站登录界面的暴力破解

目录 写在前面 使用方法 相关代码 写在前面 最近在学习使用Burp Suite时发现其intruder模块无法实现多种模式的混合使用&#xff0c;就如想要暴力破解账号和口令两个区域并同时跟踪网页的csrf_token时BP似乎不能很方便的实现这一功能&#xff0c;于是自己在练习时就想到了用…...

stc8最小系统使用usb下载程序,关于断电的避坑

首先&#xff0c;按stc官方的原理图做好最小系统。 下面&#xff0c;来看一下stc手册中的操作步骤 USB-ISP 下载程序步骤&#xff1a; 1、按下板子上的 P3.2/INT0 按键&#xff0c;就是 P3.2 接地 2、给目标芯片重新上电&#xff0c;不管之前是否已通电。 电子开关是按下停电后…...

API 数据接口:使用操作流程与安全指南

在当今数字化高速发展的时代&#xff0c;API 数据接口如同构建数字世界的关键纽带&#xff0c;将不同的软件系统和服务紧密连接在一起。无论是企业开发者致力于提升业务效率&#xff0c;还是个人用户追求更便捷的数字体验&#xff0c;深入了解 API 数据接口的使用操作流程以及全…...

elasticsearch 8.2 版本如何设置config/elasticsearch.yml

在Elasticsearch 8.2版本中,`config/elasticsearch.yml`文件是用于配置Elasticsearch的主要配置文件。你可以通过编辑这个文件来设置各种配置选项。以下是一些常见的配置选项及其设置方法: ### 1. 基本配置 #### 集群名称 ```yaml cluster.name: my-cluster ``` #### 节点…...

华为 HCIP-Datacom H12-821 题库 (33)

&#x1f423;博客最下方微信公众号回复题库,领取题库和教学资源 &#x1f424;诚挚欢迎IT交流有兴趣的公众号回复交流群 &#x1f998;公众号会持续更新网络小知识&#x1f63c; 1.VLAN Pool 只要通过一个 SSID 就能够同时支持多个业务 VLAN&#xff0c;从而缩小广播域&#…...

【网络篇】计算机网络——运输层详述(笔记)

目录 一、运输层 1. 概述 2. 运输层和网络层的关系 3. 运输层协议概述 二、多路复用和多路分解 1. 综述 2. 无连接的多路复用与多路分解&#xff08;UDP&#xff09; 3. 面向连接的多路复用与多路分解&#xff08;TCP&#xff09; 4. Web 服务器与TCP 三、UDP&#x…...

用java编写飞机大战

游戏界面使用JFrame和JPanel构建。背景图通过BG类绘制。英雄机和敌机在界面上显示并移动。子弹从英雄机发射并在屏幕上移动。游戏有四种状态&#xff1a;READY、RUNNING、PAUSE、GAMEOVER。状态通过鼠标点击进行切换&#xff1a;点击开始游戏&#xff08;从READY变为RUNNING&am…...

java Map中get方法爆错NullPointerException

代码如下&#xff1a; public class Hello {public static void main(String[] args) {Map<Integer,Integer> map new HashMap<>();map.put(2,1);int i map.get(1); System.out.println(i);} }运行出错&#xff0c;看代码很明显是get到一个不存在map的值&#x…...

ElasticSearch备考 -- Multi field

一、题目 Create the index hamlet_2 with one primary shard and no replicas Copy the mapping of hamlet_1 into hamlet_2, but also define a multi-field for speaker. The name of such multi-field is tokens and its data type is the (default) analysed string Reind…...

刷题 图论

面试经典 150 题 - 图 200. 岛屿数量 dfs 标记 visited class Solution { public:// dfs 染色const int direction[4][2] {{-1, 0}, {0, -1}, {1, 0}, {0, 1}};void dfs(vector<vector<char>>& grid, vector<vector<bool>>& visited, int x…...

基于JAVA的鲜花商城管理系统(源码+定制+讲解)鲜花商城管理系统、鲜花商城管理平台、鲜花商城信息管理、鲜花商城系统开发与应用、鲜花在线商城管理系统

博主介绍&#xff1a; ✌我是阿龙&#xff0c;一名专注于Java技术领域的程序员&#xff0c;全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师&#xff0c;我在计算机毕业设计开发方面积累了丰富的经验。同时&#xff0c;我也是掘金、华为云、阿里云、InfoQ等平台…...

深圳大学-Java程序设计-选实验1 基础知识练习

实验目的与要求&#xff1a; 实验目的&#xff1a;掌握Java程序设计开发环境的搭建&#xff0c;编写简单Java Project&#xff0c;掌握编译、运行等基本步骤和命令。 实验要求&#xff1a; (1).下载、安装"Java SE Development Kit 20.0.2"最新的版本&#xff0c;需…...

第 33 章 Ajax

第 33 章 Ajax 1.XMLHttpRequest 2.GET 与 POST 3.封装 Ajax 2005 年 Jesse James Garrett 发表了一篇文章&#xff0c;标题为&#xff1a;“Ajax&#xff1a;A new Approach to Web Applications”。他在这篇文章里介绍了一种技术&#xff0c;用他的话说&#xff0c;就叫&…...

LeetCode 209 Minimum Size Subarray Sum 题目解析和python代码

题目&#xff1a; Given an array of positive integers nums and a positive integer target, return the minimal length of a subarray whose sum is greater than or equal to target. If there is no such subarray, return 0 instead. Example 1: Input: target 7, nu…...

C# 入坑JAVA 潜规则 注解 列表 listMch,该列表存储了一个映射(Map)的集合 等 入门系列3

java 项目结构 文件说明 潜规则 java入门-CSDN博客 C# 入坑JAVA 潜规则 大小写敏感文件名和类名 枚举等 入门系列2-CSDN博客 java注解 好像和C# 特性 差不多 Data Builder NoArgsConstructor AllArgsConstructor 在Java中&#xff0c;Data、Builder、NoArgsConstructor和Al…...

2024年9月个人工作生活总结

本文为 2024年9月工作生活总结。 研发编码 vuepress构建的几个问题 某vuepress项目&#xff0c;是我在3年多以前自行构想自行着手搞的&#xff0c;主要用于将一些常用的数据文件&#xff08;markdown样式&#xff09;渲染成html网页文件&#xff0c;在自建服务程序里开启访问…...

JVM有哪些参数以及如何使用

JVM&#xff08;Java虚拟机&#xff09;参数用于调整和优化Java应用程序的性能和行为。这些参数主要分为标准参数、非标准参数&#xff08;以-X开头&#xff09;和高级参数&#xff08;以-XX开头&#xff09;。以下是一些常见的JVM参数及其使用方法&#xff1a; 标准参数 -se…...

STM32编码器接口解析及抗噪声措施探讨

1. 引言 在现代控制系统中&#xff0c;编码器扮演着非常重要的角色。它就像一个精密的测量工具&#xff0c;可以告诉我们机械部件的位置和运动状态。在STM32微控制器中&#xff0c;编码器接口可以轻松地与各种编码器连接&#xff0c;实现精确的控制。我将在这里探讨STM32编码器…...

微软发布Windows 11 2024更新,新型Copilot+ AI PC功能亮相

前言 微软在Windows 11的2024更新中加强了对人工智能的应用&#xff0c;推出了新功能Copilot。 此次更新的版本号为26100.1742&#xff0c;Copilot将首先在Windows Insider中推出&#xff0c;计划于11月向特定设备和市场推广&#xff0c;用户需开启“尽快获取最新更新”选项以…...

鹏哥C语言68-70---位操作符+单目操作符+关系操作符

#define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <string.h> #include <time.h> //--------------------------------------------------------------------------------------------------------4.位操作符 // &----按&#xff08;2进制…...

showdoc二次开发

showdoc用的vue版本老&#xff0c;需要安装老版本nodejs&#xff0c;比如node 14.21.3 win32-x64-93_binding.node问题 https://github.com/sass/node-sass/releases 下载 web_src\node_modules\node-sass\vendor\win32-x64-93 下面重命名为binding.node 代理到php后端&…...

力扣16~20题

题16&#xff08;中等&#xff09;&#xff1a; 思路&#xff1a; 双指针法&#xff0c;和15题差不多&#xff0c;就是要排除了&#xff0c;如果total<target则排除了更小的&#xff08;left右移&#xff09;&#xff0c;如果total>target则排除了更大的&#xff08;rig…...

Pikachu-Sql-Inject -基于boolian的盲注

基于boolean的盲注: 1、没有报错信息显示&#xff1b; 2、不管是正确的输入&#xff0c;还是错误的输入&#xff0c;都只显示两种情况&#xff0c;true or false&#xff1b; 3、在正确的输入下&#xff0c;输入and 1 1/and 1 2发现可以判断&#xff1b; 布尔盲注常用函数&…...

最后30天,你的系统集成项目管理工程师备考进度到哪儿了?

十一长假归来好&#xff01; 此次归来之后&#xff0c;2024年下半年软考倒计时就从4字头切换到了3字头&#xff0c;今天距离考试还有32天&#xff01; 那么问题来了&#xff0c;临近考试还有30天左右的时候&#xff0c;你的备考进度到哪里了呢&#xff1f; 其实无论目前你的实际…...

网络安全事件的发生,主要原因是什么

网络安全事件的发生&#xff0c;主要原因涉及多个方面&#xff0c;包括技术漏洞、人为因素、经济利益驱动、恶意软件和病毒威胁、社会工程学攻击、内部人员恶意行为、供应链安全问题以及法律法规的不完善等。以下是对这些原因的详细分析&#xff1a; 技术漏洞&#xff1a; 软件…...

【leetcode】274.H指数

为了方便&#xff0c;将 citations 记为 cs。 所谓的 h 指数是指一个具体的数值&#xff0c;该数值为“最大”的满足「至少发表了 x 篇论文&#xff0c;且每篇论文至少被引用 x 次」定义的合法数&#xff0c;重点是“最大”。 用题面的实例 1 来举个 &#x1f330;&#xff0…...