当前位置: 首页 > news >正文

自动驾驶 车道检测实用算法

自动驾驶 | 车道检测实用算法

车道识别是自动驾驶领域的一个重要问题,今天介绍一个利用摄像头图像进行车道识别的实用算法。该算法利用了OpenCV库和Udacity自动驾驶汽车数据库的相关内容。

该算法包含以下步骤:

  1. 摄像头校准,以移除镜头畸变(Lens distortion)的影响

  2. 图像前处理,用于识别车道线

  3. 道路视角变换(Perspective transform)

  4. 车道线检测

  5. 车辆定位和车道半径计算

01

摄像头校准

摄像头输出的视频可以看做一系列图像的时间序列。镜头的结构特性造成利用针孔摄像机拍摄的图像容易发生径向畸变,导致根据物体与光轴的距离而导致不一致的放大。

以下图片展示了两种典型的径向偏差。

为了 正确的识别图像中的车道,首先需要消除图像中的径向偏差。计算机视觉专家们找到了一种有效的方式来修正径向偏差:首先将图像转换成棋盘模型,然后校正摄像头,使获得的图像中白色和黑色格子达到相同规尺度。

为了修正失真效应,需要识别棋盘的中心并利用期望的棋盘尺度来计算失真系数,并用其来消除图像的径向失真。

在上图中,最左边的图像显示了原始的失真图像,最右侧的图可以看出图像顶部的角度扭曲,中间的图像是经过摄像头校准后的未失真图像。

OpenCV的findChessBoardCornerscalibrateCamera函数可以用来实现以上的摄像头校准过程。

校准完摄像头后,我们用真实的汽车摄像头图像来验证下效果,结果如下。

02

图像预处理

解决了摄像头图像失真问题后,我们继续探索检测车道的算法。在计算机视觉领域,分离和检测对象的一种常用方法是使用颜色变换和梯度来生成一个具有过滤阈值的二值化图像。

对于颜色变换,我们尝试了HSL、LAB和LUA三种颜色空间,以找出哪一种最适合于过滤在道路上的车道线的像素。

HSL:  通过对色相(H)、饱和度(S)、明度(L)三个颜色通道的变化以及它们相互之间的叠加来得到各式各样的颜色的

LAB:  由亮度(L)和有关色彩的A, B三个要素组成。L表示亮度(Luminosity),A表示从洋红色至绿色的范围,B表示从黄色至蓝色的范围

LUV:  由CIE XYZ空间经简单变换得到,具视觉统一性。L表示物体亮度,U和V是色度

经过试验,我们发现LAB的B道和LUV的L通道是识别车道线的最佳组合。

接下来,我们试验了Sobel梯度滤波器。图像梯度度量了颜色变化的方向强度。Sobel是一种利用高斯平滑和微分运算来降低噪声影响的梯度滤波器。

03

视角变换

车道检测的难点在于准确获得车道线的方向以及角度。在摄像头的默认视角下,远离摄像机的物体显得更小,同时车道线在远离汽车的方向逐渐相交,这和实际情况是不符的。解决这种视点扭曲的一种方法是改变图像的视角,比如可以从上往下看(鸟瞰图)。

OpenCV提供了 getPerspectiveTransform

和 warpPerspective函数,可用于进行图像的视角变换。首先,我们在图像中选择想要变换的区域,在下图中,我们选择了汽车前面的车道线部分。

接下来,选择代表目标空间的点集,在本例中,任何矩形内的点集都可以。我们可以使用warpPerspective函数将选定区域变换到我们选择的视角中。

下图显示了两条不同路段的车道线进行视角变换后的结果。

04

车道检测

下面,我们正式开始进行车道检测。在前面的各步骤中,我们进行了图像的二元阈值化和视角变换,最终获得一个黑白图像,其中白色的像素代表我们试图检测的车道线的部分。

接下来,我们需要找到一个最佳起始点来寻找属于左车道线的像素和属于右车道线的像素。一种有效的方法是生成图像中车道线像素的直方图。直方图应该有两个尖峰,各代表一条车道线,左边的尖峰是左边的车道线,右边的尖峰是右边的车道线。

然后将两个峰值的位置作为起始点来搜索属于每条车道线的像素。我们采用了滑动窗口搜索技术,它从底部开始,迭代地扫描到图像的顶部,并将检测到的像素添加到列表中。如果在一个窗口中检测到足够数量的像素,那么下一个窗口将以它们的平均位置为中心,这样我们就沿着像素的路径寻遍整个图像。

在我们检测到每个车道线的像素之后,我们就可以通过这些点来拟合一个多项式,从而产生一条平滑曲线,从而实现车道线的最佳近似。

下面的图像展示了滑动窗口技术的作用,多项式曲线通过检测到的车道线像素拟合获得(红色为左车道像素,蓝色为右车道像素)。

下面是滑动窗口搜索技术的另一个视图,高亮显示并填充搜索区域:

05

车辆/车道线位置

最后,利用两个检测到的车道线的位置,并假设摄像头位于图像的中心位置,可以计算出汽车相对于车道的位置。根据图像的分辨率,能够进行从像素到米的换算。

此外,利用尺度测量,我们还可以通过拟合一个新的多项式到物理空间来计算车道线的曲率,然后计算曲率半径。这条线的曲率半径就是这两个半径的平均值,下图显示了两条车道线的曲线半径和中心偏移量(图像中不可见)。

06

结果

以上介绍了自动驾驶中进行车道线检测的实用算法,我们通过一个多边形投影区域来显示检测结果,可以看到检测结果与实际非常吻合。

相关文章:

自动驾驶 车道检测实用算法

自动驾驶 | 车道检测实用算法 车道识别是自动驾驶领域的一个重要问题,今天介绍一个利用摄像头图像进行车道识别的实用算法。该算法利用了OpenCV库和Udacity自动驾驶汽车数据库的相关内容。 该算法包含以下步骤: 摄像头校准,以移除镜头畸变&…...

22.第二阶段x86游戏实战2-背包遍历REP指令详解

免责声明:内容仅供学习参考,请合法利用知识,禁止进行违法犯罪活动! 本次游戏没法给 内容参考于:微尘网络安全 本人写的内容纯属胡编乱造,全都是合成造假,仅仅只是为了娱乐,请不要…...

java 的三种IO模型(BIO、NIO、AIO)

java 的三种IO模型(BIO、NIO、AIO) 一、BIO 阻塞式 IO(Blocking IO)1.1、BIO 工作机制1.2、BIO 实现单发单收1.3、BIO 实现多发多收1.4、BIO 实现客户端服务端多对一1.5、BIO 模式下的端口转发思想 二、NIO 同步非阻塞式 IO&#…...

低级语言和高级语言、大小写敏感、静态语言和动态语言、链接

低级语言和高级语言 一般而言,更接近硬件的语言被称为低级语言,反之,更远离硬件被称为高级语言。C语言既有低级语言的特点,又有高级语言的特点,又被称为系统语言。Java/Python一般被称为高级语言。 大小写敏感 DOS/Win…...

P3197 [HNOI2008] 越狱

题目传送门 题面 [HNOI2008] 越狱 题目描述 监狱有 n n n 个房间,每个房间关押一个犯人,有 m m m 种宗教,每个犯人会信仰其中一种。如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱。 …...

会声会影导出视频mp4格式哪个最高清,会声会影输出格式哪个清晰

调高分辨率后,mp4视频还是不清晰。哪怕全部使用4K级素材,仍然剪不出理想中的高画质作品。不是你的操作有问题,而是剪辑软件没选对。Corel公司拥有全球顶尖的图像处理技术,该公司研发的会声会影视频剪辑软件,在过去的20…...

Linux:进程调度算法和进程地址空间

✨✨✨学习的道路很枯燥,希望我们能并肩走下来! 文章目录 目录 文章目录 前言 一 进程调度算法 1.1 进程队列数据结构 1.2 优先级 ​编辑 1.3 活动队列 ​编辑 1.4 过期队列 1.5 active指针和expired指针 1.6 进程连接 二 进程地址空间 2.1 …...

TCP ---滑动窗口以及拥塞窗口

序言 在上一篇文章中我们介绍了 TCP 中的协议段格式,以及保证其可靠传输的重传机制,着重介绍了三次握手建立连接,四次挥手断开连接的过程(👉点击查看)。  这只是 TCP 保证通信可信策略的一部分,现在让我们继续深入吧&…...

第十二章--- fixed 和 setprecision 函数、round 函数、进制转换及底层逻辑

1. 保留几位小数 在C中&#xff0c;如果你想要控制输出的小数点后的位数&#xff0c;可以使用<iomanip>头文件提供的fixed和setprecision函数。这里的fixed用于设置浮点数的输出格式为定点表示法&#xff0c;而setprecision(n)则用来指定小数点后保留的位数。具体用法如…...

ASP.NetCore---I18n(internationalization)多语言版本的应用

文章目录 0.实现的效果如下1.创建新项目I18nBaseDemo2.添加页面中的下拉框3.在HomeController中添加ChangeLanguage方法4.在Progress.cs 文件中添加如下代码&#xff1a;5. 在progress.cs中添加code6.添加Resource资源文件7.在页面中引用i18n的变量8. 重启项目&#xff0c;应该…...

vue3 环境配置vue-i8n国际化

一.依赖和插件的安装 主要是vue-i18n和 vscode的自动化插件i18n Ally https://vue-i18n.intlify.dev/ npm install vue-i18n10 pnpm add vue-i18n10 yarn add vue-i18n10 vscode在应用商城中搜索i18n Ally&#xff1a;如图 二.实操 安装完以后在对应项目中的跟package.jso…...

2024 uniapp入门教程 01:含有vue3基础 我的第一个uniapp页面

uni-app官网uni-app,uniCloud,serverless,快速体验,看视频&#xff0c;10分钟了解uni-app,为什么要选择uni-app&#xff1f;,功能框架图,一套代码&#xff0c;运行到多个平台https://uniapp.dcloud.net.cn/ 准备工作&#xff1a;HBuilder X 软件 HBuilder X 官网下载&#xf…...

CentOS 7文件系统

从centos7开始&#xff0c;默认的文件系统从ext4变成了XFS。随着虚拟化的应用越来越广泛&#xff0c;作为虚拟化磁盘来源的大文件&#xff08;单个文件几GB级别&#xff09;越来越常见。 1.XFS组成部分&#xff1a; XFS文件系统在数据的分布上主要划分为三部分&#xff1a;数据…...

vue源码解析(源码解析学习大纲)

文章目录 Vue源码解析入手方向大纲1.核心概念1-1.响应式系统1-2. 组件1-3. 虚拟DOM1-4. 指令1-5. 生命周期钩子 2.虚拟DOM2-1. 概念2-2. 工作流程2-3. 示例2-4.总结 3.组件系统3-1. 组件的定义3-2. 组件的创建3-3. 组件的模板3-4. 生命周期3-5. 事件处理3-6. 插槽&#xff08;S…...

工行企业网银U盾展期后有两个证书问题的解决方法

工行企业网银U盾证书快到期后&#xff0c;可以自助展期&#xff0c;流程可以根据企业网银提示页面操作。操作后&#xff0c;可能存在两个新旧两个证书并存的情况&#xff0c;致使网银转账等操作失败&#xff0c;如图&#xff1a; 其原因是新证书生成后&#xff0c;旧证书没有删…...

《Linux从小白到高手》理论篇:文件权限控制及文件操作相关的命令

List item 本篇介绍Linux文件权限控制及文件操作相关的命令&#xff0c;看完本文&#xff0c;有关Linux文件权限控制及文件操作相关的常用命令你就掌握了99%了。 文件权限 在介绍文件权限之前先来复习下Linux的文件类型&#xff0c;始终记住那句话&#xff1a;Linux系统下&a…...

前端框架React的详细的学习方法和过程

学习React作为前端架构的一部分&#xff0c;是一个系统且逐步深入的过程。以下是一个详细的学习方法和过程&#xff0c;可以帮助你有效地掌握React&#xff1a; 1. 理解React的基础知识 首先&#xff0c;你需要了解React的基本概念&#xff0c;包括它是什么、为什么使用它以及…...

linux中缓存,在kafka上应用总结

linux中的缓存 页缓存 pagecatch&#xff08;读缓存用于提供快速读&#xff09;块缓存&#xff08;用于提供其他设备快速写&#xff09;当对读缓存读的时候&#xff0c;修改了读的数据&#xff0c;页缓存就会被标记为脏数据&#xff0c;等到写的时候它会向块缓存同步数据&…...

前端练习小项目 —— 让图片变得更 “色”

前言&#xff1a;相信读者在学习完了HTML、CSS和JavaScript之后已经想要迫不及待的想找一个小型的项目来练练手&#xff0c;那么这篇文章就正好能满足你的 “需求”。 ✨✨✨这里是秋刀鱼不做梦的BLOG ✨✨✨想要了解更多内容可以访问我的主页秋刀鱼不做梦-CSDN博客 在开始学习…...

时间卷积网络(TCN)原理+代码详解

目录 一、TCN原理1.1 因果卷积&#xff08;Causal Convolution&#xff09;1.2 扩张卷积&#xff08;Dilated Convolution&#xff09; 二、代码实现2.1 Chomp1d 模块2.2 TemporalBlock 模块2.3 TemporalConvNet 模块2.4 完整代码示例 参考文献 在理解 TCN 的原理之前&#xff…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

ABAP设计模式之---“简单设计原则(Simple Design)”

“Simple Design”&#xff08;简单设计&#xff09;是软件开发中的一个重要理念&#xff0c;倡导以最简单的方式实现软件功能&#xff0c;以确保代码清晰易懂、易维护&#xff0c;并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计&#xff0c;遵循“让事情保…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

uniapp手机号一键登录保姆级教程(包含前端和后端)

目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号&#xff08;第三种&#xff09;后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制

目录 节点的功能承载层&#xff08;GATT/Adv&#xff09;局限性&#xff1a; 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能&#xff0c;如 Configuration …...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准

城市路内停车管理常因行道树遮挡、高位设备盲区等问题&#xff0c;导致车牌识别率低、逃费率高&#xff0c;传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法&#xff0c;正成为破局关键。该设备安装于车位侧方0.5-0.7米高度&#xff0c;直接规避树枝遮…...