当前位置: 首页 > news >正文

数据结构-排序1

1.排序的概念

排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。

稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次 序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排 序算法是稳定的;否则称为不稳定的。

内部排序:数据元素全部放在内存中的排序。

外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不断地在内外存之间移动数据的排序。

2.常见的排序算法

插入排序:直接插入排序,希尔排序

选择排序:选择排序,堆排序

交换排序:冒泡排序,快速排序

归并排序:归并排序

Comparison Sorting Visualization-各个排序算法的动态演示效果

2.1冒泡排序

基本思想:

所谓交换,就是根据序列中两个记录键值的比较结果来对换这两个记录在序列中的位置,交换排 序的特点是:将键值较大的记录向序列的尾部移动,键值较小的记录向序列的前部移动。

冒泡排序是左右相邻的两个元素比较,元素范围是[0,n-1]

冒泡排序的特性总结:

1. 冒泡排序是一种非常容易理解的排序

2. 时间复杂度:O(N^2)

3. 空间复杂度:O(1)

4. 稳定性:稳定

上图是加入了flag标记值进行了优化,如果进行了交换就把flag值置为1,如果不变就说明是有序的,直接break。

2.2插入排序

直接插入排序是一种简单的插入排序算法,基本思路:

把待排序的记录按其关键值大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为止,得到一个新的有序序列。

当插入第i(i>=1)个元素时,前面的array[0],array[1],…,array[i-1]已经排好序

此时用array[i]的排序码与 array[i-1],array[i-2],…的排序码顺序进行比较

找到插入位置即将array[i]插入,原来位置上的元素顺序后移

理解上述代码,有n个数据,数据元素范围[0,n-1],插入排序的思想就是前[0,end]个数据是有序的,现在要把第(end+1)位置的数据插入到[0,end]中,保持有序。

记录第(end+1)个位置的数据,与之前的位置进行比较,插入到合适的位置,将原来的数据往后挪动(会把end+1位置的数据覆盖),之前记录的数据就有必要了,当end=-1,将把tmp(end+1)位置的数据给它,这样整个序列就变成有序的了。

直接插入排序的特性总结:

1. 元素集合越接近有序,直接插入排序算法的时间效率越高

2. 时间复杂度:O(N^2)

3. 空间复杂度:O(1),它是一种稳定的排序算法

4. 稳定性:稳定

2.3希尔排序(缩小增量排序)

希尔排序:

1.预排序(让数组接近有序)

2.插入排序

基本思想是:先选定一个整数,把待排序文件中所有记录分成gap个组,所有距离为gap的记录分在同一组内,并对每一组内的记录进行排序。然后重复上述分组和排序的工 作。

当到达gap=1时,所有记录在统一组内排好序。

预排序:

gap越大,大的数可以越快跳到后面,小的数可以越快跳到前面,但越不接近有序。

gap越小,跳的越慢,但越接近有序,当gap=1的时候就相当于插入排序,就有序了。

希尔排序的特性总结:

1. 希尔排序是对直接插入排序的优化。

2. 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就 会很快。这样整体而言,可以达到优化的效果。

3. 希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,因此在好些树中给出的 希尔排序的时间复杂度都不固定:

4.时间复杂度:O(N^1.3)

4. 稳定性:不稳定

2.4选择排序

基本思想:

每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的 数据元素排完 。

直接选择排序:

在元素集合array[i]--array[n-1]中选择关键码最大(小)的数据元素。

若它不是这组元素中的最后一个(第一个)元素,则将它与这组元素中的最后一个(第一个)元素交换。

在剩余的array[i]--array[n-2](array[i+1]--array[n-1])集合中,重复上述步骤,直到集合剩余1个元素。

这里我做了一点小优化,在我们遍历的时候,同时找到最小和最大的元素,然后把最小的和第一个位置交换,把最大的和最后一个位置交换(这里值得注意的是,如果第一个元素是最大的,因为在这之前我们已经把最小的元素和第一个位置进行了交换,此时第一个位置的元素就不是我们需要的最大的元素了,所以要及时更新最大的元素的位置,然后再把它交互到最后一个位置)

直接选择排序的特性总结:

1. 直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用

2. 时间复杂度:O(N^2)

3. 空间复杂度:O(1)

4. 稳定性:不稳定

2.5堆排序

堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是 通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆。

直接选择排序的特性总结:

1. 堆排序使用堆来选数,效率就高了很多。

2. 时间复杂度:O(N*logN)

3. 空间复杂度:O(1)

4. 稳定性:不稳定

相关文章:

数据结构-排序1

1.排序的概念 排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。 稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序…...

Springboot 整合 durid

文章目录 Springboot 整合 druiddruid的优势配置参数使用整合 Druid配置数据源配置参数绑定配置参数配置监控页面配置拦截器 Springboot 整合 druid druid的优势 可以很好的监控 DB 池连接 和 SQL 的执行情况可以给数据库密码加密可以很方便的编写JDBC插件 配置参数 使用 整…...

JVM 系列知识体系全面回顾

经过几个月的努力,JVM 知识体系终于梳理完成了。 很早之前也和小伙伴们分享过 JVM 相关的技术知识,再次感谢大家支持和反馈。 最后再次献上 JVM系列文章合集索引,感兴趣的小伙伴可以点击查看。 JVM系列(一) -什么是虚拟机JVM系列(二) -类的…...

crossover软件如何安装程序 及最新图文案张教程

IT之家 2 月 23 日消息,CodeWeavers 近日发布了 CrossOver 24 版本更新,基于近期发布的 Wine 9.0,不仅兼容更多应用和游戏,还初步支持运行 32 位应用程序。 苹果在 macOS Catalina 系统中移除对 32 位软件的支持之后,在…...

Python爬虫之正则表达式于xpath的使用教学及案例

正则表达式 常用的匹配模式 \d # 匹配任意一个数字 \D # 匹配任意一个非数字 \w # 匹配任意一个单词字符(数字、字母、下划线) \W # 匹配任意一个非单词字符 . # 匹配任意一个字符(除了换行符) [a-z] # 匹配任意一个小写字母 […...

Jenkins打包,发布,部署

一、概念 Jenkins是一个开源的持续集成工具,主要用于自动构建和测试软件项目,以及监控外部任务的运行。与版本管理工具(如SVN,GIT)和构建工具(如Maven,Ant,Gradle)结合使…...

CSS 实现楼梯与小球动画

CSS 实现楼梯与小球动画 效果展示 CSS 知识点 CSS动画使用transform属性使用 页面整体布局 <div class"window"><div class"stair"><span style"--i: 1"></span><span style"--i: 2"></span>…...

sqli-labs less-14post报错注入updatexml

post提交报错注入 闭合方式及注入点 利用hackbar进行注入&#xff0c;构造post语句 unameaaa"passwdbbb&SubmitSubmit 页面报错&#xff0c;根据分析&#xff0c;闭合方式". 确定列数 构造 unameaaa" or 11 # &passwdbbb&SubmitSubmit 确定存在注…...

Python开发环境配置(mac M2)

1. 前言 作为一名程序员&#xff0c;工作中需要使用Python进行编程&#xff0c;甚至因为项目需要还得是不同版本的Python如何手动管理多个版本的Python&#xff0c;如何给Pycharm&#xff08;IDE&#xff09;配置对应的interpreter等&#xff0c;都成为一个 “不熟练工” 的难…...

其他:Python语言绘图合集

文章目录 介绍注意导入数据函数模块画图 介绍 python语言的科研绘图合集 注意 This dataset includes the following (All files are preceded by "Marle_et_al_Nature_AirborneFraction_"):- "Datasheet.xlsx": Excel dataset containing all annual a…...

处理 Vue3 中隐藏元素刷新闪烁问题

一、问题说明 页面刷新&#xff0c;原本隐藏的元素会一闪而过。 效果展示&#xff1a; 页面的导航栏通过路由跳转中携带的 meta 参数控制导航栏的 显示/隐藏&#xff0c;但在实践过程中发现&#xff0c;虽然元素隐藏了&#xff0c;但是刷新页面会出现闪烁的问题。 项目源码&…...

【MySQL】数据目录迁移

一、使用场景 使用该方法一般是数据目录所在磁盘不支持扩展&#xff0c;只能通过新加磁盘来扩展数据目录磁盘空间。通常是Windows服务器&#xff0c;或者是Linux服务器的mysql数据目录的磁盘没有使用lvm。 二、准备工作 1. 新磁盘初始化&#xff0c;达到可使用状态 2. 需要自己…...

【项目安全设计】软件系统安全设计规范和标准(doc原件)

1.1安全建设原则 1.2 安全管理体系 1.3 安全管理规范 1.4 数据安全保障措施 1.4.1 数据库安全保障 1.4.2 操作系统安全保障 1.4.3 病毒防治 1.5安全保障措施 1.5.1实名认证保障 1.5.2 接口安全保障 1.5.3 加密传输保障 1.5.4终端安全保障 资料获取&#xff1a;私信或者进主页。…...

INS淡绿色风格人像街拍Lr调色教程,手机滤镜PS+Lightroom预设下载!

调色介绍 INS 淡绿色风格人像街拍通过 Lightroom 调色可以营造出清新、自然、时尚的视觉效果。这种风格以淡绿色为主色调&#xff0c;给人一种宁静、舒适的感觉。 预设信息 调色风格&#xff1a;INS风格预设适合类型&#xff1a;人像&#xff0c;街拍&#xff0c;自拍&#…...

python 实现最小路径和算法

最小路径和算法介绍 最小路径和问题通常指的是在一个网格&#xff08;如二维数组&#xff09;中&#xff0c;找到从起点&#xff08;如左上角&#xff09;到终点&#xff08;如右下角&#xff09;的一条路径&#xff0c;使得路径上经过的元素值之和最小。这类问题可以通过多种…...

Vue3实现动态菜单功能

文章目录 0.效果演示1.搭建Vue3项目1.1 vite 脚手架创建 Vue3 项目1.2 设置文件别名1.3 安装配置 element-plus1.4 安装配置路由2.登录页面3.后台管理页面3.1 搭建后台框架3.2 左侧菜单栏3.3 header 用户信息3.4 主要内容3.5 footer4.配置静态路由5.记录激活菜单5.1 el-menu 绑…...

Qt+VS2019+大恒相机相机回调方式总结

一、前言 大恒驱动安装完成后&#xff0c;在安装目录有SDK调用文档&#xff0c;里面有更详细的调用介绍&#xff0c;此文档对近期做的Demo做一个回顾性总结。 二、调用流程概述 三、针对性内容介绍&#xff1a; 1. 在执行相机操作之前&#xff0c;需要先执行此代码&#xff1…...

Python库pandas之六

Python库pandas之六 输入/输出read_sql函数应用实列 输入/输出 read_sql 函数 词法&#xff1a;pandas.read_sql(sql, con, index_colNone, coerce_floatTrue, paramsNone, parse_datesNone, columnsNone, chunksizeNone, dtype_backend<no_default>, dtypeNone) rea…...

[C++]使用纯opencv部署yolov11-seg实例分割onnx模型

【算法介绍】 在C中使用纯OpenCV部署YOLOv11-seg进行实例分割是一项具有挑战性的任务&#xff0c;因为YOLOv11通常是用PyTorch等深度学习框架实现的&#xff0c;而OpenCV本身并不直接支持加载和运行PyTorch模型。然而&#xff0c;可以通过一些间接的方法来实现这一目标&#x…...

PAT甲级-1122 Hamiltonian Cycle

题目 题目大意 给定一个图和几组顶点&#xff0c;判断每组顶点是否能构成一个哈密顿回路。 知识点 哈密顿回路满足几点要求&#xff1a;构成一个封闭环&#xff0c;并且经过所有顶点&#xff0c;每个顶点经过一次。 即满足第一个顶点值和最后一个顶点值相等&#xff1b;只有…...

Linux应用开发之网络套接字编程(实例篇)

服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

Oracle查询表空间大小

1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

MFC内存泄露

1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中&#xff0c;接口是一种抽象类型&#xff0c;它定义了一组方法的集合&#xff1a; // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的&#xff1a; // 矩形结构体…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...