当前位置: 首页 > news >正文

鸟类数据集,鸟数据集,目标检测class:bird,共一类13000+张图片yolo格式(txt)

鸟类数据集,鸟数据集,目标检测class:bird,共一类13000+张图片yolo格式(txt)

 

鸟类数据集,鸟数据集,目标检测


class:bird,共一类
13000+张图片
yolo格式(txt)

鸟类目标检测数据集介绍

数据集名称

鸟类目标检测数据集 (Bird Detection Dataset)

数据集概述

该数据集是一个专门用于训练和评估鸟类目标检测模型的数据集。数据集包含超过13000张图像,所有图像都带有详细的标注信息,标注格式为YOLO(You Only Look Once)格式的TXT文件。这些图像涵盖了各种类型的鸟类及其在不同环境下的状态,适用于基于深度学习的目标检测任务。通过这个数据集,可以训练出能够在复杂环境中准确检测鸟类位置的模型,从而帮助进行野生动物监测、生态保护等应用。

数据集特点
  • 高质量图像:数据集中的图像具有高分辨率,能够提供丰富的细节信息,特别适合鸟类特征分析。
  • 带标注:每张图像都有详细的标注信息,包括鸟类的位置和大小。
  • YOLO格式标注:标注信息以YOLO格式的TXT文件提供,方便直接使用于支持YOLO格式的目标检测框架。
  • 实际应用场景:适用于需要精确检测鸟类位置的场景,如野生动物监测系统、生态保护项目等。
数据集结构
 
bird_detection_dataset/
├── images/                            # 图像文件
│   ├── 00001.jpg                      # 示例图像
│   ├── 00002.jpg
│   └── ...
├── labels/                            # YOLO格式标注文件
│   ├── 00001.txt                      # 示例YOLO标注文件
│   ├── 00002.txt
│   └── ...
├── data.yaml                          # 类别描述文件
├── README.md                          # 数据集说明
└── model/                             # 预训练模型文件夹(可选)└── bird_detection_model.pt        # 预训练模型(如果有的话)
数据集内容
  1. images/

    • 功能:存放图像文件。
    • 内容
      • 00001.jpg:示例图像。
      • 00002.jpg:另一张图像。
      • ...
  2. labels/

    • 功能:存放YOLO格式的TXT标注文件。
    • 内容
      • 00001.txt:示例YOLO标注文件。
      • 00002.txt:另一张图像的YOLO标注文件。
      • ...
  3. data.yaml

    • 功能:定义数据集的类别和其他相关信息。
    • 内容
      train: bird_detection_dataset/images
      val: bird_detection_dataset/images
      nc: 1
      names: ['bird']  # 鸟类
  4. README.md

    • 功能:数据集的详细说明文档。
    • 内容
      • 数据集的来源和用途。
      • 数据集的结构和内容。
      • 如何使用数据集进行模型训练和评估。
      • 其他注意事项和建议。
  5. model/(可选)

    • 功能:存放预训练模型文件。
    • 内容
      • bird_detection_model.pt:预训练的模型文件(如果有的话)。
数据集统计
  • 总图像数量:超过13000张
  • 类别:1类
  • 类别列表
    • bird(鸟类)
使用说明
  • 环境准备:确保安装了常用的深度学习库,例如torchtorchvisionnumpy等。
  • 数据集路径设置:将数据集解压到项目目录下,并确保路径正确。
  • 加载预训练模型:如果有预训练模型,可以直接加载并对其进行微调或直接使用。
  • 数据增强:可以通过随机翻转、旋转等方法增加数据多样性,提高模型鲁棒性。
  • 超参数调整:根据实际情况调整学习率、批大小等超参数,以获得最佳训练效果。
  • 硬件要求:建议使用GPU进行训练和推理,以加快处理速度。如果没有足够的计算资源,可以考虑使用云服务提供商的GPU实例。
  • 类别平衡:虽然数据集中只有一种类别,但在实际应用中可能需要进一步检查并处理样本不平衡问题,例如通过过采样或欠采样方法。

关键代码示例

以下是一个使用PyTorch和torchvision库进行鸟类目标检测的示例代码。我们将使用预训练的YOLOv5模型,并对其进行微调以适应我们的数据集。

首先,确保你已经安装了YOLOv5的相关依赖。你可以通过以下命令安装YOLOv5:

git clone https://github.com/ultralytics/yolov5
cd yolov5
pip install -r requirements.txt

接下来是训练和评估模型的Python代码示例:

import torch
from pathlib import Path
import yaml# 定义数据集配置文件路径
data_yaml = 'path/to/bird_detection_dataset/data.yaml'# 读取数据集配置
with open(data_yaml, 'r') as f:data_config = yaml.safe_load(f)# 设置YOLOv5的训练参数
hyp = 'yolov5/data/hyps/hyp.scratch-low.yaml'  # 超参数配置文件
epochs = 300  # 训练轮数
batch_size = 16  # 批大小
imgsz = 640  # 输入图像大小
workers = 8  # 工作线程数# 训练命令
train_command = f"python train.py --img {imgsz} --batch {batch_size} --epochs {epochs} --data {data_yaml} --cfg yolov5s.yaml --weights yolov5s.pt --name bird_detection --workers {workers} --hyp {hyp}"# 运行训练
!{train_command}# 模型保存路径
model_path = 'runs/train/bird_detection/weights/best.pt'# 加载模型
model = torch.hub.load('ultralytics/yolov5', 'custom', path=model_path)# 评估模型
val_command = f"python val.py --data {data_yaml} --weights {model_path} --img {imgsz} --batch-size {batch_size} --task test"# 运行评估
!{val_command}

注意事项

  • 数据格式:确保输入的数据格式正确,特别是图像文件和标注文件的格式。
  • 超参数调整:根据实际情况调整学习率、批大小等超参数,以获得最佳训练效果。
  • 硬件要求:建议使用GPU进行训练和推理,以加快处理速度。如果没有足够的计算资源,可以考虑使用云服务提供商的GPU实例。
  • 数据增强:可以通过数据增强技术(如随机翻转、旋转等)来增加模型的鲁棒性。
  • 模型选择:除了YOLOv5,还可以尝试其他目标检测模型,如Faster R-CNN、SSD等,以找到最适合当前任务的模型。
  • 类别平衡:虽然数据集中只有一种类别,但在实际应用中可能需要进一步检查并处理样本不平衡问题,例如通过过采样或欠采样方法。

通过上述步骤,你可以成功地使用这个高质量的鸟类目标检测数据集进行模型训练和评估。该数据集不仅适用于学术研究,还可以应用于实际的野生动物监测、生态保护项目等领域,帮助提升对鸟类目标的检测准确性和效率。希望这个数据集能帮助你更好地理解和应用最新的深度学习技术。

相关文章:

鸟类数据集,鸟数据集,目标检测class:bird,共一类13000+张图片yolo格式(txt)

鸟类数据集,鸟数据集,目标检测class:bird,共一类13000张图片yolo格式(txt) 鸟类数据集,鸟数据集,目标检测 class:bird,共一类 13000张图片 yolo格式(txt) 鸟…...

透明物体的投射和接收阴影

1、让透明度测试Shader投射阴影 (1)同样我们使用FallBack的形式投射阴影,但是需要注意的是,FallBack的内容为:Transparent / Cutout / VertexLit,该默认Shader中会把裁剪后的物体深度信息写入到 阴影映射纹…...

NL2SQL商业案例详解:AI智能开放搜索 OpenSearch

NL2SQL商业案例详解:AI智能开放搜索 OpenSearch 基于阿里巴巴自主研发的大规模分布式搜索引擎搭建的一站式智能搜索业务开发平台,目前为包括淘宝、天猫在内的阿里集团核心业务提供搜索服务支持。通过内置各行业的查询语义理解、机器学习排序算法等能力,以及充分开放的文本向…...

【万字长文】Word2Vec计算详解(一)

【万字长文】Word2Vec计算详解(一) 写在前面 本文用于记录本人学习NLP过程中,学习Word2Vec部分时的详细过程,本文与本人写的其他文章一样,旨在给出Word2Vec模型中的详细计算过程,包括每个模块的计算过程&a…...

【EXCEL数据处理】000022 案例 保姆级教程,附多个操作案例。EXCEL邮件合并工具

前言:哈喽,大家好,今天给大家分享一篇文章!创作不易,如果能帮助到大家或者给大家一些灵感和启发,欢迎收藏关注哦 💕 目录 【EXCEL数据处理】000022 案例 保姆级教程,附多个操作案例。…...

第十五周:机器学习笔记

第十五周周报 摘要Abstract一、机器学习1. 各式各样神奇的自注意力机制1.1 Local Attention/Truncated Attention(截断注意力机制)1.2 Stride Attention(跨步注意力机制)1.3 Global Attention(全局注意力机制&#xff…...

Highcharts 散点图

Highcharts 散点图 介绍 Highcharts 是一个流行的 JavaScript 图表库,广泛用于网页上展示动态和交互式的图表。散点图是 Highcharts 提供的一种图表类型,它通过在二维坐标系中展示数据点的分布,来揭示变量之间的关系。散点图特别适用于展示和比较大量的数据点,从而发现数…...

谷粒商城踩坑

1.mysql表名大小写问题(P16) 问题描述:代码要求的是表名大写,但实际上数据库是小写的,就报错: 问题解决:未解决 mysql版本为5.7.44。网上有两种解决方式,但是都解决不了 1.1 解决方…...

构建MySQL健康检查Web应用

构建MySQL健康检查Web应用 在这里将探讨如何将MySQL健康检查功能转换为一个功能完整的Web应用。这个应用允许用户通过简单的Web界面执行MySQL健康检查,并查看详细的结果。我们将逐步介绍代码实现、改进过程以及如何设置和运行这个应用。 1. MySQL健康检查类 首先…...

【LeetCode】每日一题 2024_10_8 旅行终点站(哈希)

前言 每天和你一起刷 LeetCode 每日一题~ LeetCode 启动! 国庆结束了 . . . 力扣的每日一题也来到了终点站 题目:旅行终点站 代码与解题思路 func destCity(paths [][]string) string { // 国庆结束,旅途到了终点// 今天这道题算是一个小…...

Matlab实现海鸥优化算法优化回声状态网络模型 (SOA-ESN)(附源码)

目录 1.内容介绍 2部分代码 3.实验结果 4.内容获取 1内容介绍 海鸥优化算法(Seagull Optimization Algorithm, SOA)是一种受海鸥觅食和飞行行为启发的群体智能优化算法。SOA通过模拟海鸥在空中搜寻食物、聚集和分散的行为模式,来探索和开发…...

看门狗电路设计

看门狗电路设计 看门狗是什么应用架构图TPV6823芯片功能硬件时序图为什么要一般是要保持200个毫秒左右的这种低电平的时间看门狗电路实际应用与条件 看门狗是什么 硬件看门狗芯片,Watch DogTimer,可用于受到电气噪音、电源故障、静电放电等影响(造成软件…...

No.13 笔记 | 网络安全防护指南:从法律法规到技术防御

一、法律法规 《中华人民共和国网络安全法》要点 遵守法律:所有个人和组织在使用网络时,必须遵守宪法和法律,不得利用网络从事危害国家安全等活动。 个人信息保护:禁止非法获取、出售或提供个人信息。若违反但未构成犯罪&#x…...

大数据毕业设计选题推荐-白酒销售数据分析-Python数据可视化-Hive-Hadoop-Spark

✨作者主页:IT研究室✨ 个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Python…...

shell脚本写代码

用简单的test语句来判断是否闰年 #! /bin/bash read -p "sd " yearif [ $((year%4)) -eq 0 -a $((year%100)) -ne 0 -o $((year%400)) -eq 0 ]thenecho "是润年"elseecho "不是闰年" fi判断一个数是否为偶数 #! /bin/bash read -p "…...

SLM2104S高压半桥驱动SLM2104SCA-13GTR兼容IR2104 高压、高速的功率MOSFET和IGBT驱动器

SLM2104SCA-13GTR产品概述: SLM2104SCA-13GTR是一款高压、高速的功率MOSFET和IGBT驱动器,它提供相互依存的高边、低边输出驱动信号。采用专有的高压集成电路和锁存免疫CMOS技术,提供可靠的单芯片驱动方案。逻辑输入电平与标准CMOS或LSTTL输出…...

三层网络与三层组网

"三层组网"和"三层网络"虽然名字相似,但它们的含义却有所不同 三层网络 三层网络指的是网络层的概念,它工作在OSI模型的第三层——网络层。网络层的主要功能是通过IP地址进行路由和转发数据包。三层网络设备,如路由器或…...

从0开始下载安装并使用unity

首先我们要在浏览器上找到unity的官网 这一个就是了,我们点进去后是这个界面: 然后我们点击上面这张图的左下角的“下载Unity Hub”,推荐后续安装都装在D盘: 这里他会让我们注册一个账号,如果之前有的话登录就行了&am…...

QT:计算点到线段的垂线段的距离

描述 在Qt中,要计算一个点到一条线段的垂线段的长度(即点到线段上最近点的距离,且这个点是垂直于线段的),你不能直接使用QVector2D::distanceToLine,因为这个方法计算的是点到直线的垂直距离,而…...

经典5级流水线概述

抽象化的流水线结构: 流水线的基本概念 多个任务重叠(并发/并行)执行,但使用不同的资源流水线技术提高整个系统的吞吐率,不能缩短单个任务的执行时间其潜在的加速比=流水线的级数 流水线正常工作的基本条件…...

LSTM模型实现电力数据预测

关于深度实战社区 我们是一个深度学习领域的独立工作室。团队成员有:中科大硕士、纽约大学硕士、浙江大学硕士、华东理工博士等,曾在腾讯、百度、德勤等担任算法工程师/产品经理。全网20多万粉丝,拥有2篇国家级人工智能发明专利。 社区特色&a…...

jmeter学习(7)beanshell

beanshell preprocessor 发送请求前执行 beanshell postprocessor 发送请求前执行 获取请求相关信息 String body sampler.getArguments().getArgument(0).getValue(); String url sampler.getPath(); 获取响应报文 String responseprev.getResponseDataAsString(); 获…...

TCP_SOCKET编程实现

文章目录 与UDP_SOCKET的区别第一代Tcp_ServerTcp_Client第二代Tcp_Server第三代Tcp_server多线程版本Tcp_Server线程池版的Tcp_Server使用inet_ntop来解决线程安全问题 业务逻辑编写总结补充说明&&业务代码完成ping的真实作用Translate编写Transform业务代码 整体总结…...

螺蛳壳里做道场:老破机搭建的私人数据中心---Centos下Docker学习07(基于docker容器的防火墙及NAT企业实战)

7.1 网络准备 7.2 网络规划 1)虚拟网络编辑器 点击右下方“更改设置”,点击“添加网络”假如vmnet3和vmnet4,然后分别选择vmnet3和vmnet4,设置为“仅主机模式”,按③处处理,去掉“使用DHCP”,…...

②EtherNet/IP转ModbusTCP, EtherCAT/Ethernet/IP/Profinet/ModbusTCP协议互转工业串口网关

EtherCAT/Ethernet/IP/Profinet/ModbusTCP协议互转工业串口网关https://item.taobao.com/item.htm?ftt&id822721028899 协议转换通信网关 EtherNet/IP 转 Modbus TCP (接上一章) GW系列型号 配置使用 与 EtherNet/IP 主站进行组态说明 这里介…...

Java 集合(Collection)

1.什么是集合? 对象的容器,定义了对多个对象进行操作的常用方法,属于接口类型。 2.集合和数组的区别 (1)数组长度固定,集合长度不固定 (2)数组可以存储基本类型和引用类型&#…...

Windows系统编程(三)线程并发

进程与线程 进程:直观的说就是任务管理器中各种正在运行的程序。对于操作系统来说,进程仅仅是一个数据结构,并不会真实的执行代码 线程:通常被称作但并不真的是轻量级进程或实际工作中的进程,它会真实的执行代码。每…...

【Qt】控件概述(2)—— 按钮类控件

控件概述(2) 1. PushButton2. RadioButton——单选按钮2.1 使用2.2 区分信号 clicked,clicked(bool),pressed,released,toggled(bool)2.3 QButtonGroup分组 3. CheckBox——复选按钮 1. PushButton QPushB…...

Java访问器方法和更改器方法

一.访问器方法 1.访问器方法的定义和用途 访问器方法,通常也称为getter方法,是一种在面向对象编程中用于从类的外部访问私有字段值的特殊方法。这些方法的设计目的是为了提供对类内部状态的受限访问,同时保持类的封装性。通过使用访问器方法&…...

CAN协议帧结构

一、数据帧的整体结构 ┌───────┬───────┬───────┬───────┬───────┬───────┬───────┬───────┬───────┬───────┬───────┐ │ SOF │ ID[11]│ RTR │ IDE │ DLC │ Data …...