当前位置: 首页 > news >正文

Matlab实现海鸥优化算法优化回声状态网络模型 (SOA-ESN)(附源码)

目录
1.内容介绍
2部分代码
3.实验结果
4.内容获取


1内容介绍

海鸥优化算法(Seagull Optimization Algorithm, SOA)是一种受海鸥觅食和飞行行为启发的群体智能优化算法。SOA通过模拟海鸥在空中搜寻食物、聚集和分散的行为模式,来探索和开发解空间,寻找最优解。该算法的特点是具有较强的探索能力和较快的收敛速度,适合解决多模态和高维优化问题。不过,SOA也存在一些潜在的缺点,比如在某些情况下可能会出现早熟收敛,即过早地停止在局部最优解附近。

回声状态网络(Echo State Network, ESN)作为一种轻量级的递归神经网络,其核心思想是在一个固定的、随机生成的“储备池”中传递输入信号,通过调整输出层的权重来完成训练。ESN的优点在于训练过程简单快捷,能够有效地处理时间序列数据。然而,ESN的性能高度依赖于几个关键超参数的设置,如储备池的大小、输入权重的分布等,不当的超参数选择可能导致模型过拟合或欠拟合。

利用SOA优化ESN的超参数,可以充分发挥SOA的全局搜索能力,帮助ESN找到最佳的超参数配置,进而提升模型的预测准确性和稳定性。这种结合方式不仅增强了ESN在时间序列预测、模式识别等领域的应用效果,也为SOA在解决实际工程问题中提供了更多的可能性,如电力负荷预测、金融市场分析等。通过这种方式,SOA与ESN的结合展现了群体智能算法与机器学习技术融合的广阔前景。


2部分代码

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
tic
load bwand
%%  导入数据

x=bwand;
[r,s] = size(x);
output=x(:,s);
input=x(:,1:s-1);  %nox

%%  划分训练集和测试集
M = size(P_train, 2);
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);


%%  获取最优参数

hidden = WBest_pos(1);             % 储备池规模
lr     = WBest_pos(2);             % 学习率(更新速度)
reg    = WBest_pos(3);             % 正则化系数

%%  训练模型
net = esn_train(p_train, t_train, hidden, lr, Init, reg);

%%  预测
t_sim1 = esn_sim(net, p_train);
t_sim2 = esn_sim(net, p_test );

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);

%%  绘图
%% 测试集结果
figure;
plotregression(T_test,T_sim2,['回归图']);
figure;
ploterrhist(T_test-T_sim2,['误差直方图']);
%% 预测集绘图
figure
plot(1:N,T_test,'r-*',1:N,T_sim2,'b-+','LineWidth',0.5)
legend('真实值','SOA-ESN预测值')
xlabel('预测样本')
ylabel('预测结果')
string={'测试集预测结果对比';['(R^2 =' num2str(R2) ' RMSE= ' num2str(error2)  ' MSE= ' num2str(mse2) ' RPD= ' num2str(RPD2) ')']};
title(string)

%% 测试集误差图
figure  
ERROR3=T_test-T_sim2
plot(T_test-T_sim2,'b-*','LineWidth',0.5)
xlabel('测试集样本编号')
ylabel('预测误差')
title('测试集预测误差')
grid on;
legend('SOA-ESN预测输出误差')


3实验结果


4内容获取


主页简介欢迎自取,点点关注,非常感谢!
Matlab实现SOA-ESN海鸥优化算法优化回声状态网络模型源码介绍:

MATLAB完整源码和数据(MATLAB完整源码+数据)(excel数据可替换),
1.多种变量输入,单个变量输出;
2.MatlabR2018b及以上版本一键运行;
3.具有良好的编程习惯,程序均包含简要注释。

相关文章:

Matlab实现海鸥优化算法优化回声状态网络模型 (SOA-ESN)(附源码)

目录 1.内容介绍 2部分代码 3.实验结果 4.内容获取 1内容介绍 海鸥优化算法(Seagull Optimization Algorithm, SOA)是一种受海鸥觅食和飞行行为启发的群体智能优化算法。SOA通过模拟海鸥在空中搜寻食物、聚集和分散的行为模式,来探索和开发…...

看门狗电路设计

看门狗电路设计 看门狗是什么应用架构图TPV6823芯片功能硬件时序图为什么要一般是要保持200个毫秒左右的这种低电平的时间看门狗电路实际应用与条件 看门狗是什么 硬件看门狗芯片,Watch DogTimer,可用于受到电气噪音、电源故障、静电放电等影响(造成软件…...

No.13 笔记 | 网络安全防护指南:从法律法规到技术防御

一、法律法规 《中华人民共和国网络安全法》要点 遵守法律:所有个人和组织在使用网络时,必须遵守宪法和法律,不得利用网络从事危害国家安全等活动。 个人信息保护:禁止非法获取、出售或提供个人信息。若违反但未构成犯罪&#x…...

大数据毕业设计选题推荐-白酒销售数据分析-Python数据可视化-Hive-Hadoop-Spark

✨作者主页:IT研究室✨ 个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Python…...

shell脚本写代码

用简单的test语句来判断是否闰年 #! /bin/bash read -p "sd " yearif [ $((year%4)) -eq 0 -a $((year%100)) -ne 0 -o $((year%400)) -eq 0 ]thenecho "是润年"elseecho "不是闰年" fi判断一个数是否为偶数 #! /bin/bash read -p "…...

SLM2104S高压半桥驱动SLM2104SCA-13GTR兼容IR2104 高压、高速的功率MOSFET和IGBT驱动器

SLM2104SCA-13GTR产品概述: SLM2104SCA-13GTR是一款高压、高速的功率MOSFET和IGBT驱动器,它提供相互依存的高边、低边输出驱动信号。采用专有的高压集成电路和锁存免疫CMOS技术,提供可靠的单芯片驱动方案。逻辑输入电平与标准CMOS或LSTTL输出…...

三层网络与三层组网

"三层组网"和"三层网络"虽然名字相似,但它们的含义却有所不同 三层网络 三层网络指的是网络层的概念,它工作在OSI模型的第三层——网络层。网络层的主要功能是通过IP地址进行路由和转发数据包。三层网络设备,如路由器或…...

从0开始下载安装并使用unity

首先我们要在浏览器上找到unity的官网 这一个就是了,我们点进去后是这个界面: 然后我们点击上面这张图的左下角的“下载Unity Hub”,推荐后续安装都装在D盘: 这里他会让我们注册一个账号,如果之前有的话登录就行了&am…...

QT:计算点到线段的垂线段的距离

描述 在Qt中,要计算一个点到一条线段的垂线段的长度(即点到线段上最近点的距离,且这个点是垂直于线段的),你不能直接使用QVector2D::distanceToLine,因为这个方法计算的是点到直线的垂直距离,而…...

经典5级流水线概述

抽象化的流水线结构: 流水线的基本概念 多个任务重叠(并发/并行)执行,但使用不同的资源流水线技术提高整个系统的吞吐率,不能缩短单个任务的执行时间其潜在的加速比=流水线的级数 流水线正常工作的基本条件…...

LSTM模型实现电力数据预测

关于深度实战社区 我们是一个深度学习领域的独立工作室。团队成员有:中科大硕士、纽约大学硕士、浙江大学硕士、华东理工博士等,曾在腾讯、百度、德勤等担任算法工程师/产品经理。全网20多万粉丝,拥有2篇国家级人工智能发明专利。 社区特色&a…...

jmeter学习(7)beanshell

beanshell preprocessor 发送请求前执行 beanshell postprocessor 发送请求前执行 获取请求相关信息 String body sampler.getArguments().getArgument(0).getValue(); String url sampler.getPath(); 获取响应报文 String responseprev.getResponseDataAsString(); 获…...

TCP_SOCKET编程实现

文章目录 与UDP_SOCKET的区别第一代Tcp_ServerTcp_Client第二代Tcp_Server第三代Tcp_server多线程版本Tcp_Server线程池版的Tcp_Server使用inet_ntop来解决线程安全问题 业务逻辑编写总结补充说明&&业务代码完成ping的真实作用Translate编写Transform业务代码 整体总结…...

螺蛳壳里做道场:老破机搭建的私人数据中心---Centos下Docker学习07(基于docker容器的防火墙及NAT企业实战)

7.1 网络准备 7.2 网络规划 1)虚拟网络编辑器 点击右下方“更改设置”,点击“添加网络”假如vmnet3和vmnet4,然后分别选择vmnet3和vmnet4,设置为“仅主机模式”,按③处处理,去掉“使用DHCP”,…...

②EtherNet/IP转ModbusTCP, EtherCAT/Ethernet/IP/Profinet/ModbusTCP协议互转工业串口网关

EtherCAT/Ethernet/IP/Profinet/ModbusTCP协议互转工业串口网关https://item.taobao.com/item.htm?ftt&id822721028899 协议转换通信网关 EtherNet/IP 转 Modbus TCP (接上一章) GW系列型号 配置使用 与 EtherNet/IP 主站进行组态说明 这里介…...

Java 集合(Collection)

1.什么是集合? 对象的容器,定义了对多个对象进行操作的常用方法,属于接口类型。 2.集合和数组的区别 (1)数组长度固定,集合长度不固定 (2)数组可以存储基本类型和引用类型&#…...

Windows系统编程(三)线程并发

进程与线程 进程:直观的说就是任务管理器中各种正在运行的程序。对于操作系统来说,进程仅仅是一个数据结构,并不会真实的执行代码 线程:通常被称作但并不真的是轻量级进程或实际工作中的进程,它会真实的执行代码。每…...

【Qt】控件概述(2)—— 按钮类控件

控件概述(2) 1. PushButton2. RadioButton——单选按钮2.1 使用2.2 区分信号 clicked,clicked(bool),pressed,released,toggled(bool)2.3 QButtonGroup分组 3. CheckBox——复选按钮 1. PushButton QPushB…...

Java访问器方法和更改器方法

一.访问器方法 1.访问器方法的定义和用途 访问器方法,通常也称为getter方法,是一种在面向对象编程中用于从类的外部访问私有字段值的特殊方法。这些方法的设计目的是为了提供对类内部状态的受限访问,同时保持类的封装性。通过使用访问器方法&…...

CAN协议帧结构

一、数据帧的整体结构 ┌───────┬───────┬───────┬───────┬───────┬───────┬───────┬───────┬───────┬───────┬───────┐ │ SOF │ ID[11]│ RTR │ IDE │ DLC │ Data …...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...

【Go语言基础【12】】指针:声明、取地址、解引用

文章目录 零、概述&#xff1a;指针 vs. 引用&#xff08;类比其他语言&#xff09;一、指针基础概念二、指针声明与初始化三、指针操作符1. &&#xff1a;取地址&#xff08;拿到内存地址&#xff09;2. *&#xff1a;解引用&#xff08;拿到值&#xff09; 四、空指针&am…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

Java并发编程实战 Day 11:并发设计模式

【Java并发编程实战 Day 11】并发设计模式 开篇 这是"Java并发编程实战"系列的第11天&#xff0c;今天我们聚焦于并发设计模式。并发设计模式是解决多线程环境下常见问题的经典解决方案&#xff0c;它们不仅提供了优雅的设计思路&#xff0c;还能显著提升系统的性能…...

LangChain【6】之输出解析器:结构化LLM响应的关键工具

文章目录 一 LangChain输出解析器概述1.1 什么是输出解析器&#xff1f;1.2 主要功能与工作原理1.3 常用解析器类型 二 主要输出解析器类型2.1 Pydantic/Json输出解析器2.2 结构化输出解析器2.3 列表解析器2.4 日期解析器2.5 Json输出解析器2.6 xml输出解析器 三 高级使用技巧3…...

在Zenodo下载文件 用到googlecolab googledrive

方法&#xff1a;Figshare/Zenodo上的数据/文件下载不下来&#xff1f;尝试利用Google Colab &#xff1a;https://zhuanlan.zhihu.com/p/1898503078782674027 参考&#xff1a; 通过Colab&谷歌云下载Figshare数据&#xff0c;超级实用&#xff01;&#xff01;&#xff0…...

Appium下载安装配置保姆教程(图文详解)

目录 一、Appium软件介绍 1.特点 2.工作原理 3.应用场景 二、环境准备 安装 Node.js 安装 Appium 安装 JDK 安装 Android SDK 安装Python及依赖包 三、安装教程 1.Node.js安装 1.1.下载Node 1.2.安装程序 1.3.配置npm仓储和缓存 1.4. 配置环境 1.5.测试Node.j…...

基于stm32F10x 系列微控制器的智能电子琴(附完整项目源码、详细接线及讲解视频)

注&#xff1a;文章末尾网盘链接中自取成品使用演示视频、项目源码、项目文档 所用硬件&#xff1a;STM32F103C8T6、无源蜂鸣器、44矩阵键盘、flash存储模块、OLED显示屏、RGB三色灯、面包板、杜邦线、usb转ttl串口 stm32f103c8t6 面包板 …...