当前位置: 首页 > news >正文

Windows系统编程(三)线程并发

进程与线程

进程:直观的说就是任务管理器中各种正在运行的程序。对于操作系统来说,进程仅仅是一个数据结构,并不会真实的执行代码

线程:通常被称作但并不真的是轻量级进程或实际工作中的进程,它会真实的执行代码。每个线程都有一个需要执行的代码块称为线程回调函数。每个进程启动的时候会同步启动一个主线程,而主线程所执行的代码块就是main函数。当main函数结束时,主线程结束并销毁,同时其他子线程随之销毁

真并发与伪并发

伪并发

在早期的cpu即单核cpu中,因性能核心各方面较为落后,并发编程实际是一个伪并发编程,即系统中所有进程按照优先级去抢占cpu时间片,也就是系统一会执行这个一会执行哪个。

由于抢占时间片所需时间较短,所以我们并不觉得程序卡顿。但各进程抢占cup时间片是一个很麻烦的事情,cpu虽然提供任务切换的功能即TSS任务段,但Windows并不使用。这是因为Windows自己实现了线程调度,即在线程切换时,上个线程代码执行到的地方的线程的状态,线程上下文,通用寄存器,段寄存器,硬件调试寄存器,EIP(指令指针寄存器),EFLAGS等都会被Windows通过Windows(Context)保存,直到再次切换回来后再加载

真并发

随着科技的发展,cpu由单核cpu变成了多核cpu。此时多个核心可以同时独立执行一个 任务,此时也称作真并发

并发形式

1.多进程并发:一个进程里只有一个线程,同时启动多个进程实现并发,如浏览器打开的多个窗口

2.多线程并发:一个进程内运行多个线程,是真实的并发。其中存在变量的访问问题,具体如下:有Value = 100 全局变量以及A,B两个线程。初始时A,B线程访问Value,访问值都是100,现AB两线程都对Value进行++。但操作完成后,Value的值为101,丢失了一个操作。这种情况叫做线程同步问题

线程的生存周期

1.当该线程回调函数执行完毕时,自然死亡

2.当主线程死亡时,子线程被动死亡

并发与并行:并发更强调数量,并行更强调性能

线程应用

普通函数应用

#include<iostream>
#include<thread>
void FirstThreadCallBack() //构建一个普通函数作为子线程
{for (size_t i = 0; i < 100000; i++){std::cout << "First:" << i << std::endl;}
}
int main()
{std::thread obj(FirstThreadCallBack); //声明线程对象,启动一个线程去执行线程回调函数for (size_t i = 0; i < 100000; i++){std::cout << "main:"<< i << std::endl;}system(“pause”);//加上此函数使主线程不会结束,让我们更清晰看到线程并发的过程。否则主线程结束子线程随之结束return 0;
}

此时程序会同时进行上述两个循环打印

仿函数应用

#include<iostream>
#include<thread>
class Exec//一个仿函数
{
public:void operator()()const{std::cout << "Exec" << std::endl;}
};
int main()
{Exec e;std::thread obj(e);return 0;
}

此时打印Exec

Lambda应用

#include<iostream>
#include<thread>
int main()
{std::thread obj([] {std::cout << "Lambda" << std::endl; });return 0;
}

此时程打印Lambda

综上可知,任何可以调用的类型都可以用于线程对象的构造函数传参

线程死亡

一旦线程启动了,我们就需要知道线程是怎么结束的

1.自然死亡:thread析构函数terminate()在子线程执行完毕后析构子线程

2.非自然死亡:thread析构函数执行完毕时,子线程析构,但子线程并没有执行完毕

3.等待:绝对的自然死亡 等待子线程执行完毕后,程序再进行执行

4.不再等待:主线程存活时后台运行,依赖于主线程的存活

5.如果一个线程是Windows原生线程,主线程销毁后其也会死亡

Windows原生线程

现在我们验证一下,当主线程死亡时,Windows原生线程会不会死亡

#include<iostream>
#include<thread>
#include<windows.h>
DWORD ThreadCallBack(LPVOID lpThreadParameter)
{for (size_t i = 0; i < 100000; i++){std::cout << "First:" << i << std::endl;}return 0;
}
int main()
{CreateThread(NULL, NULL, (LPTHREAD_START_ROUTINE)ThreadCallBack, NULL, NULL, NULL);//创建了一个windows原生线程return 0;
}

此时运行程序,发现随着主线程的结束该Windows原生线程死亡

等待死亡

#include<iostream>
#include<thread>
#include<windows.h>
DWORD ThreadCallBack(LPVOID lpThreadParameter)
{for (size_t i = 0; i < 100000; i++){std::cout << "First:" << i << std::endl;}return 0;
}
int main()
{HANDLE hThread = CreateThread(NULL, NULL, (LPTHREAD_START_ROUTINE)ThreadCallBack, NULL, NULL, NULL);//创建一个原生的Windows线程WaitForSingleObject(hThread, -1); //此时主线程会永久等待该子线程结束以后再结束return 0;
}

此时运行程序原生线程不会死亡,直到它运行完毕

阻塞等待

#include<iostream>
#include<thread>
#include<windows.h>
DWORD ThreadCallBack(LPVOID lpThreadParameter)
{for (size_t i = 0; i < 100000; i++){std::cout << "First:" << i << std::endl;}return 0;
}
int main()
{std::thread obj(FirstThreadCallBack);//创建一个普通的线程obj.join(); //阻塞等待,作用是在此处等待子线程结束,程序再继续运行。//当使用此函数时,我们通常需要加一个异常处理。这是因为子线程可能会出现一个异常报错而导致无法执行完毕以至于程序一直处于阻塞等待的情况return 0;
}

此时运行程序,知道子线程运行完毕,主线程才会结束

不再等待

#include<iostream>
#include<thread>
#include<windows.h>
DWORD ThreadCallBack(LPVOID lpThreadParameter)
{for (size_t i = 0; i < 100000; i++){std::cout << "First:" << i << std::endl;}return 0;
}
int main()
{std::thread obj(FirstThreadCallBack);obj.detach(); //不再等待:同Windows原生线程一样,主线程死亡,其子线程也死亡 
//此时额外加一个循环,程序在执行该循环时,主线程没有死亡,子线程也不会死亡,而是一起执行两个线程for (size_t i = 0; i < 100000; i++) {std::cout << "main:" << i << std::endl;}return 0;
}

线程同步问题

问题演示

如下当我们演示一个简单的线程同步

#include<iostream>
#include<thread>
#include<windows.h>
#include<string.h>
void Print(std::string szBuffer,int nCount)
{for (size_t i = 0; i < nCount; i++){std::cout << szBuffer << ":" << i << std::endl;}
}
int main()
{std::thread obj(Print,"abc",200);system(“pause”);return 0;
}

程序运行发现:

原因:这就是时间切片的伪并发可能出现的问题,很形象展示了线程同步问题这个现象

现我们针对如下线程同步程序进行进一步的问题解决讲解

#include <iostream>
#include <thread>
int g_Value = 0; 
void add()
{for (size_t i = 0; i < 1000000; i++){g_Value++;}
}
int main()
{std::thread objA(add);std::thread objB(add);objA.join();objB.join();std::cout << g_Value << std::endl;system("pause");return 0;
}

程序运行以后,g_Value的最终结果应该是2000000,但但每次运行时g_Value都是随机数,这是因为在线程同步时出现丢失操作

互斥体解决线程同步问题

方法一:使用互斥体方法

#include <iostream>
#include <thread>
#include<mutex>
int g_Value = 0; 
std::mutex some_mutex; //声明一个互斥体,用于线程可能出错的地方
void add()
{for (size_t i = 0; i < 1000000; i++){some_mutex.lock(); //该函数被互斥体加锁保护。当一个线程在访问该函数时,其他线程无法访问g_Value++; some_mutex.unlocke(); //互斥体解锁}
}//此时该函数不会再出现多线程同时访问的问题了
int main()
{std::thread objA(add);std::thread objB(add);objA.join();objB.join();std::cout << g_Value << std::endl;system("pause");return 0;
}

方法二:使用锁类模板

#include <iostream>
#include <thread>
#include<mutex>
int g_Value = 0; 
void add()
{for (size_t i = 0; i < 1000000; i++){//构造函数调用时加锁,析构函数调用时解锁std::lock_guard<std::mutex> guard(some_mutex); g_Value++;}
}
int main()
{std::thread objA(add);std::thread objB(add);objA.join();objB.join();std::cout << g_Value << std::endl;system("pause");return 0;
}

以上两种方法可以很好的解决线程同步问题

作业

01.尝试使用多线程造成线程同步问题。
02.尝试使用thread库中的其他控制函数

相关文章:

Windows系统编程(三)线程并发

进程与线程 进程&#xff1a;直观的说就是任务管理器中各种正在运行的程序。对于操作系统来说&#xff0c;进程仅仅是一个数据结构&#xff0c;并不会真实的执行代码 线程&#xff1a;通常被称作但并不真的是轻量级进程或实际工作中的进程&#xff0c;它会真实的执行代码。每…...

【Qt】控件概述(2)—— 按钮类控件

控件概述&#xff08;2&#xff09; 1. PushButton2. RadioButton——单选按钮2.1 使用2.2 区分信号 clicked&#xff0c;clicked(bool)&#xff0c;pressed&#xff0c;released&#xff0c;toggled(bool)2.3 QButtonGroup分组 3. CheckBox——复选按钮 1. PushButton QPushB…...

Java访问器方法和更改器方法

一.访问器方法 1.访问器方法的定义和用途 访问器方法&#xff0c;通常也称为getter方法&#xff0c;是一种在面向对象编程中用于从类的外部访问私有字段值的特殊方法。这些方法的设计目的是为了提供对类内部状态的受限访问&#xff0c;同时保持类的封装性。通过使用访问器方法&…...

CAN协议帧结构

一、数据帧的整体结构 ┌───────┬───────┬───────┬───────┬───────┬───────┬───────┬───────┬───────┬───────┬───────┐ │ SOF │ ID[11]│ RTR │ IDE │ DLC │ Data …...

valgrind 单例模式的自动释放(多线程)

单例模式&#xff0c;其中对象是由_pInstance指针来保存的&#xff0c;而在使用单例设计模式的过程中&#xff0c;也难免会遇到内存泄漏的问题。那么是否有一个方法&#xff0c;可以让对象自动释放&#xff0c;而不需要程序员自己手动去释放呢&#xff1f; ——嵌套类 5.1、内…...

OpenFegin

文章目录 一、OpenFegin是什么&#xff1f;二、基本使用三、超时重试机制4.自定义超时重传机制五、底层实现 一、OpenFegin是什么&#xff1f; OpenFeign的全称为Spring Cloud OpenFeign(下文简称OpenFeign),是Spring Cloud团队开发的一款基于 Feign的框架&#xff0c;声明式W…...

LeetCode-2608. 图中的最短环【广度优先搜索 图,腾讯面试真题】

LeetCode-2608. 图中的最短环【广度优先搜索 图&#xff0c;腾讯面试真题】 题目描述&#xff1a;解题思路一&#xff1a;【一图秒懂】枚举起点跑 BFS解题思路二&#xff1a;背诵版解题思路三&#xff1a; 题目描述&#xff1a; 现有一个含 n 个顶点的 双向 图&#xff0c;每个…...

IDEA 编译报错 “java: 常量字符串过长” 的解决办法

目录 一、问题描述二、问题原因2.1 理论角度2.2 源码角度 三、解决方案解决方案①&#xff1a;StringBuilder 拼接解决方案②&#xff1a;读取文件内容 四、方案验证 在线文本换行工具&#xff1a; https://lzltool.cn/Toolkit/WrapWordsInText 一、问题描述 今天在开发过程中…...

RK3568平台开发系列讲解(I2C篇)I2C 总线实现 client 设备方法

🚀返回专栏总目录 文章目录 一、非设备树实现 i2c client1.1、i2c_new_device1.2、i2c client二、设备树实现 i2c2.1、i2c_client 结构体的生成2.2、i2c_driver 驱动2.2.1、module_i2c_driver2.2.2、fan53555_regulator_probe沉淀、分享、成长,让自己和他人都能有所收获!�…...

K8S安装和部署

环境部署说明 主机IPmaster172.25.254.100node10172.25.254.10node20172.25.254.20harbor172.25.254.233 所有节点禁用selinux和防火墙 所有节点同步时间和解析 所有节点安装docker-ce 所有节点禁用swap&#xff0c;注意注释掉/etc/fstab文件中的定义 解析配置&#xff08;…...

Singleton(单例模式)

1. 意图 在开发中&#xff0c;若某些模块或功能只需要一个类实例&#xff0c;所有调用地方通过着一个类对象访问功能&#xff0c;单例模式符合这种类实例创建模式&#xff0c;并且通过提供统一类实例接口访问类对象。 2. 适用性 《Gof 设计模式-可复用面向对象软件的基础》中对…...

【Linux报错】“-bash: cd: too many arguments“

问题描述 今天使用 cd 想要调整某个文件目录时&#xff0c;发现以下报错 原因分析&#xff1a; arguments 是参数的意思&#xff0c;该报错提示参数过多&#xff0c;意味着系统识别到了多余参数 本质原因&#xff1a;你的命令中输入了多余的 ”空格“ &#xff0c;检查一…...

C# WebService返回参数为DataTable报错“XML文档有错误”

该问题由于DataTable列存在自定义类型。 解决该报错需要以下几步&#xff1a; 1、自定义类型增加xml序列化 2、由于C#从 XML 反序列化 DataSet 或 DataTable 时的默认限制&#xff0c;所以需要先把调用方的项目开放限制&#xff0c;如果是.netframework项目&#xff0c;需要…...

[paddle]paddleseg快速开始

快速开始 为了让大家快速了解PaddleSeg&#xff0c;本文档使用一个简单示例进行演示。在实际业务中&#xff0c;建议大家根据实际情况进行调整适配。 在开始下面示例之前&#xff0c;请大家确保已经安装好PaddleSeg开发环境&#xff08;安装说明&#xff09;。 1 准备数据 …...

UNIAPP popper气泡弹层【unibest框架下】vue3+typescript

看了下市场的代码&#xff0c;要么写的不怎么好&#xff0c;要么过于复杂。于是把市场的代码下下来了自己改。200行代码撸了个弹出层组件。兼容H5和APP。 功能&#xff1a; 1)只支持上下左右4个方向的弹层不支持侧边靠齐 2)不对屏幕边界适配 3)支持弹层外边点击自动隐藏 4)支持…...

launcher.py: error: the following arguments are required: --output_dir

记录一个LLaMA-Factroy配置过程。 安装 git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git cd LLaMA-Factory pip install -e ".[torch,metrics]"训练 CUDA_VISIBLE_DEVICES0 llamafactory-cli train example/train_lora/.yaml按理说配置好文件应…...

C语言基础之结构体

今天我们来讲讲C语言基础的最后一个知识点了 —— 结构体。不知道大家对前面的C语言基础的知识点掌握的怎么样了呢&#xff1f;下面我们就开始讲解结构体的相关知识点吧&#xff01; 什么是结构体呢&#xff1f;或者说结构体有什么作用呢&#xff1f;对于复杂对象来说&#xff…...

Redis入门第四步:Redis发布与订阅

欢迎继续跟随《Redis新手指南&#xff1a;从入门到精通》专栏的步伐&#xff01;在本文中&#xff0c;我们将深入探讨Redis的发布与订阅&#xff08;Pub/Sub&#xff09;模式。这是一种强大的消息传递机制&#xff0c;适用于各种实时通信场景&#xff0c;如聊天应用、实时通知和…...

MySQL 之权限与授权

MySQL 权限及授权系统用于控制数据库用户对数据库资源的访问和操作权限。它提供了一种细粒度的安全控制机制&#xff0c;确保只有被授权的用户才能执行特定的操作。MySQL 的权限控制体系非常灵活&#xff0c;支持多种权限类型及级别&#xff08;数据库、表、列、存储过程等&…...

解决方案:Pandas里面的loc跟iloc,有什么区别

文章目录 一、现象二、解决方案案例使用loc使用iloc 简单总结 一、现象 在用Pandas库处理数据的时候&#xff0c;久而久之不用loc跟iloc&#xff0c;难免会有些混乱记混 二、解决方案 在Pandas中&#xff0c;loc和iloc是两种常用的数据选择方法&#xff0c;它们的主要区别在…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

【JavaEE】-- HTTP

1. HTTP是什么&#xff1f; HTTP&#xff08;全称为"超文本传输协议"&#xff09;是一种应用非常广泛的应用层协议&#xff0c;HTTP是基于TCP协议的一种应用层协议。 应用层协议&#xff1a;是计算机网络协议栈中最高层的协议&#xff0c;它定义了运行在不同主机上…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日&#xff0c;2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席&#xff0c;并作《智能体在安全领域的应用实践》主题演讲&#xff0c;分享了在智能体在安全领域的突破性实践。他指出&#xff0c;百度通过将安全能力…...

多种风格导航菜单 HTML 实现(附源码)

下面我将为您展示 6 种不同风格的导航菜单实现&#xff0c;每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案

这个问题我看其他博主也写了&#xff0c;要么要会员、要么写的乱七八糟。这里我整理一下&#xff0c;把问题说清楚并且给出代码&#xff0c;拿去用就行&#xff0c;照着葫芦画瓢。 问题 在继承QWebEngineView后&#xff0c;重写mousePressEvent或event函数无法捕获鼠标按下事…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机&#xff08;无人驾驶飞行器&#xff0c;UAV&#xff09;技术的快速发展&#xff0c;其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统&#xff0c;无人机的“黑飞”&…...