留存率的定义与SQL实现
1.什么是留存率
留存率是指在特定时间段内,仍然继续使用某项产品或服务的用户占用户总数的百分比。
通常,留存率会以日,周,或月为单位进行统计和分析。
2.SQL留存率常见问题
1.计算新用户登录的日期的次日留存率以及3日留存率
CREATE TABLE ods_user_login_log (user_id VARCHAR(255) NOT NULL,login_dt VARCHAR(255) NOT NULL
);
INSERT INTO ods_user_login_log VALUES
('001','20240701'),
('001','20240701'),
('002','20240701'),
('003','20240701'),
('001','20240702'),
('002','20240702'),
('002','20240702'),
('001','20240703'),
('002','20240704'),
('004','20240704')
;
有一张用户登录日志表 ods_usr_login_log
,包含 user_id
(用户ID)和 login_dt
(登录日期)。每个用户在同一天可能登录多次。
问题:计算有新用户登录的日期的次日留存率和3日留存率。
N日留存用户数:指某日活跃的用户在第N日再次活跃的用户数量。
本道题思路如下:
-
找出每个用户首次登录的日期
使用子查询 t1,通过MIN(login_dt)
函数获取每个用户的首次登录日期,并将其转换为日期格式date
。 -
将所有登录记录转换为日期格式
子查询 t2 将login_dt
字段转换为日期格式。 -
计算次日留存率和3日留存率
- 在最终的
SELECT
语句中,使用DATEDIFF(t2.dt, t1.dt)
来计算用户登录日期与其首次登录日期的天数差。 - 对于次日留存率,当天数差为1时,使用
COUNT(DISTINCT t2.user_id)
统计次日再次登录的用户数量,并将其除以首次登录的用户数量COUNT(DISTINCT t1.user_id)
,得到次日留存率。 - 对于3日留存率,类似地,当天数差为3时,计算第3日再次登录的用户数,并进行相应的计算。
- 在最终的
-
LEFT JOIN 进行多表联查
为什么使用LEFT JOIN?LEFT JOIN
的作用是保留左表中的所有记录(即使在右表中没有匹配项)。在这个SQL语句中,左表是子查询 t1,它包含每个用户的首次登录日期。右表是 t2,它包含用户的所有登录记录。通过 LEFT JOIN
,我们可以确保所有首次登录的用户都会出现在最终的结果中,即使这些用户在后续的指定日期(如次日或第3日)没有再次登录。这样可以保证在计算留存率时,所有首次登录的用户都被纳入分母,即使他们在后续日期没有登录,确保留存率计算准确无误。
一分钟搞明白Join、Left Join、Right Join的区别_join left join right join-CSDN博客
-- 计算用户首次登录的日期
with t1 as (select user_id,cast(min(login_dt) as date) as dtfrom ods_user_login_loggroup by user_id, cast(login_dt as date)
),
-- 将数据转为date格式
t2 as (select user_id, cast(login_dt as date) as dtfrom ods_user_login_loggroup by user_id, cast(login_dt as date)
)select t1.dt-- 确保用户在同一天登录的数据只被计算一次
,count(distinct case when datediff(t2.dt, t1.dt) = 1 then t2.user_id else null end) / count(distinct t1.user_id) as retain_1d_rate
,count(distinct case when datediff(t2.dt, t1.dt) = 3 then t2.user_id else null end) / count(distinct t1.user_id) as retain_3d_rate
from t1
left join t2
on t1.user_id = t2.user_id
group by t1.dt
;
2.2021年11月每天新用户的次日留存率_牛客题霸_牛客网
在本道题中,我们同样是计算新用户的次日留存率。
但数据列却完全不同,第一道题中,我们的数据列就只有登录时间。
在本题中,我们既有in_time进入时间,又有离开时间out_time。
那么就会存在一个情况:当在一条记录中,如果in_time-进入时间和out_time-离开时间跨天了。
如:(101, 9002, '2021-11-04 11:00:55', '2021-11-05 11:00:59', 0);
这时我们也算该用户在两天里都活跃过
那么,我们该如果计算,才能实现该逻辑呢?
具体来说,就是将in_time和out_time合并为同一个数据列,记录每个用户在每天的活跃情况。
select uid, date(in_time) as active_dt from tb_user_logunion all
select uid, date(out_time) as active_dt from tb_user_log
具体来说,我们就是把out_time也算作是活跃日。
在这里我们使用UNION ALL,是因为:
- 它可以保留所有的用户行为记录,包括重复的日期。这对于准确计算次日留存率很重要。
- 我们需要考虑每个用户可能在同一天多次访问的情况。使用 UNION ALL 确保了我们捕获到所有这些访问记录。(然后distinct去重)
剩下的操作就跟第一道题一样,计算用户首次登录的日期,然后通过计算datediff(end_time, start_time)
来确定日期间隔。
with t1 as (select uid,min(in_time) as dtfrom tb_user_loggroup by uid
),
t2 as (select uid, date(in_time) as active_dt from tb_user_logunion allselect uid, date(out_time) as active_dt from tb_user_log
)select date_format(t1.dt,'%Y-%m-%d') as dt,round(count(distinct case when datediff(t2.active_dt,t1.dt) = 1 then t2.uid else null end) /count(distinct t1.uid),2) as uv_left_ratefrom t1left join t2on t1.uid = t2.uidwhere date_format(t1.dt,'%Y-%m') = '2021-11'-- t1.dt BETWEEN '2021-11-01' AND '2021-11-30'group by date_format(t1.dt,'%Y-%m-%d')
优化小建议:
使用 DATE_FORMAT(t1.dt, '%Y-%m') = '2021-11'
进行筛选,这样的条件会在查询时对所有结果再次进行格式化,可能会影响性能。 (格式化 + 筛选)
使用 t1.dt BETWEEN '2021-11-01' AND '2021-11-30'
进行时间范围过滤,这样的条件可以利用之前已经格式化好的数据,性能更好。 (只有筛选)
相关文章:

留存率的定义与SQL实现
1.什么是留存率 留存率是指在特定时间段内,仍然继续使用某项产品或服务的用户占用户总数的百分比。 通常,留存率会以日,周,或月为单位进行统计和分析。 2.SQL留存率常见问题 1.计算新用户登录的日期的次日留存率以及3日留存率 …...

Java的锁机制详解
在并发编程中,锁 是用于控制多个线程对共享资源进行访问的工具。Java提供了多种锁机制,从最基础的 synchronized 到高级的 ReentrantLock,这些锁帮助我们确保线程安全,并能有效避免数据竞争和死锁问题。 1. synchronized 关键字…...

用户登录与信息管理:实现小程序登录与用户信息存储
用户登录与信息管理:实现小程序登录与用户信息存储 在现代的移动应用中,用户登录与信息管理是构建个性化用户体验的基础。小程序作为轻量级的应用形式,在简化开发流程的同时,也需要我们妥善管理用户的登录状态与用户信息。本文将…...
Java如何调用构造函数和方法以及使用
调用构造函数的格式 构造函数在创建新对象时被调用。调用格式如下: ClassName objectName new ClassName(parameters); ClassName:你需要创建其实例的类的名称。 objectName:你将创建的对象的名称。 parameters:如果你使用的是…...
TFBoys谁最重
题目 使用go语言设计一个程序计算TFBoys谁最重,要求使用结构体表示TFBoys三个成员,设计函数计算三个重量的最大值。 程序 package main import ("fmt") type Person struct {Name stringWeight float64} func (p Person) GetWeigh…...
scp 通过中间机器进行远程拷贝
有时候,我们想要通过 scp将一台机器上的文件拷贝至另外一台机器,但这两台机器可能没有直接联通,需要通过中间机器进行跳转才能访问,一个麻烦的办法就是,先将文件拷贝至中间机器,然后再从中间机器拷贝至另外…...

探索 Python 高精度计算的奥秘:mpmath 库全解析
文章目录 探索 Python 高精度计算的奥秘:mpmath 库全解析背景:为何选择 mpmath?第二部分:mpmath 是什么?第三部分:如何安装 mpmath?第四部分:mpmath 函数使用示例第五部分࿱…...

<<迷雾>> 第10章 用机器做一连串的加法(1)--使用两排开关分别给出被加数和加数 示例电路
info::操作说明 鼠标单击逻辑输入切换 0|1 状态 primary::在线交互操作链接 https://cc.xiaogd.net/?startCircuitLinkhttps://book.xiaogd.net/cyjsjdmw-examples/assets/circuit/cyjsjdmw-ch10-01-5-bit-adder.txt 原图...

Stable Diffusion最新版nowebui的api使用详解
最近在使用stable diffusion最新版的Stable Diffusion WebUI Forge进行api调用,下面来一步一步的进行展开吧!!! 1、下载lllyasviel/stable-diffusion-webui-forge GitHub - lllyasviel/stable-diffusion-webui-forgeContribute to lllyasviel/stable-diffusion-webui-for…...

云服务器架构详解:X86计算_ARM_GPU/FPGA/ASIC_裸金属_超级计算集群
阿里云服务器架构有什么区别?X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器、超级计算集群有什么区别?阿里云服务器网aliyunfuwuqi.com分享云服务器ECS架构详细说明: 阿里云服务器ECS架构说明 阿里云服务器ECS架构 X86计算 X86计算架…...
高级java每日一道面试题-2024年10月4日-数据库篇-MySQL索引底层结构为什么使用B+树?
如果有遗漏,评论区告诉我进行补充 面试官: MySQL索引底层结构为什么使用B树? 我回答: 该面试题本质还是在考察B树的数据结构和在数据库系统中的应用,下边是详细的回答。 B树的基本特性 B 树的结构特点 非叶子节点只存储键值信息,不存储…...

【JVM】内存分析工具JConsole/Visual VM
1 缘起 日常补充JVM调优,调优实践前需要学习一些理论做支撑, JVM调优三步:理论>GC分析>JVM调优, 我们会有一些玩笑话说,做了这么久Java开发,做过JVM调优吗? 做过,面试时。当然…...

一静 、二平 、三忍 、四让、五淡
一静 、二平 、三忍 、四让、五淡。 作者:儒风君 来源:儒风大家(ID: rufengdajia) 古人为人、处事、修身,都有独特的章法。 一静、二平、三忍、四让、五淡。 说透中国人的大智慧。 1 静 《道德经》里讲:“清静为天下正。”…...
js 深入理解函数(一):函数的本质
目录 概述1. 箭头函数2. 函数名 :指向函数的指针3. 理解参数3.1 arguments 对象的作用3.2 arguments 的注意点3.3 箭头函数中的参数 4. 没有重载5. 默认参数值5.1 ES 6 支持显示定义默认参数5.2 传 undefined 等于没有传值5.3 arguments 不反映参数默认值5.4 默认值…...

MySql表结构设计
创建 create table 表名(字段1 字段类型 [约束] [comment 字段1注释],...) [comment 表注释];约束是作用于表中字段上的规则,用于限制存储在表中的数据。它的目的是保证数据库中数据的正确性、有效性和完整性。 约束描述关键字非空约束限制该字段不能为nullnot nu…...

java:pdfbox 3.0 去除扫描版PDF中文本水印
官网下载 https://pdfbox.apache.org/download.html下载 pdfbox-app-3.0.3.jar cd D:\pdfbox 运行 java -jar pdfbox-app-3.0.3.jar java -jar pdfbox-app-3.0.3.jar Usage: pdfbox [COMMAND] [OPTIONS] Commands:debug Analyzes and inspects the internal structu…...
python知识点100篇系列(17)-替换requests的python库httpx
Requests 是使用 Apache2 Licensed 许可证的 基于Python开发的HTTP 库,其在Python内置模块的基础上进行了高度的封装,使用Requests可以轻而易举的完成浏览器可有的任何操作。 但是在python3.6之后,出现了一个requests的替代选项; httpx httpx是Python新一代的网络请求库…...
python 实现graph list图列算法
graph list图列算法介绍 图列(Graph List)算法通常指的是在图的表示中,使用列表(List)或更具体地说,邻接表(Adjacency List)来表示图的一种算法。邻接表是图的一种常见表示方法&…...
LFU算法 初始频率 动态频率
LFU(Least Frequently Used)算法是一种缓存淘汰策略,其核心思想是根据数据的访问频率来决定淘汰哪些数据。具体来说, LFU算法认为如果一个数据在过去一段时间内被访问的次数很少,那么它在未来被再次访问的概率也…...

Spring Boot 进阶-详解SpringBoot的复杂数据校验规则
在之前的文章中,我们介绍了SpringBoot整合JSR-303规则来完成数据校验操作。接下来我们来聊一聊关于数据校验的具体用法。 之前的文章中举过一个简单的例子通过学生信息提交的例子来介绍了关于数据校验如何去做。那么接下来这篇文章,我们就来看看对于一些复杂的数据校验如何完…...

51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...
Java 语言特性(面试系列1)
一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
React Native 导航系统实战(React Navigation)
导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...