当前位置: 首页 > news >正文

数学建模算法与应用 第1章 线性规划

第1章 线性规划

线性规划是数学规划领域的重要分支,广泛应用于资源配置、生产计划、物流管理等领域。它主要用于解决如何在满足一定约束条件下,使目标函数(如成本、利润等)达到最大或最小的问题。第一章将介绍线性规划的基本概念、投资的收益和风险,以及与之相关的求解方法和实际应用。

1.1 线性规划问题

线性规划问题是指在满足若干线性等式或不等式约束的条件下,找到一个最优解以使某个线性目标函数最大化或最小化。目标函数和约束条件都由变量的线性组合构成。典型的线性规划问题包括产品组合优化、生产调度以及资源分配等。

在数学表达形式中,线性规划通常可以表示为:

  • 目标函数:在一定条件下,最大化或最小化某个线性组合。

  • 约束条件:受限于一系列的线性等式或不等式。

例如,某工厂希望在满足原料供应和市场需求的情况下,最大化生产利润。这种问题可以用线性规划模型来描述,通过对不同产品的产量进行合理安排,从而使利润最大化。

线性规划问题可以应用于多个实际场景,包括但不限于:

  • 物流运输:如何在最低成本下将货物从多个工厂运送到多个目的地。

  • 生产调度:在生产过程中,如何安排机器的运行时间以达到最大化产出。

  • 资源分配:在有限资源下(如时间、人力、资金),如何合理安排以实现最大化收益。

我们可以使用表格来总结线性规划问题的一般形式:

项目描述
目标函数最大化或最小化某线性组合
约束条件一系列线性等式或不等式
应用场景产品组合优化、生产调度、资源分配
Matlab代码示例

为了更好地理解线性规划问题的求解方法,我们可以使用Matlab来进行求解。下面是一个简单的Matlab代码示例,解决一个线性规划问题:

% 定义目标函数的系数(需要最小化的目标函数)
f = [-3; -5];  % 目标函数:最大化 3x + 5y% 定义不等式约束条件的系数
A = [1, 0; 0, 2; 3, 2];  % 约束条件矩阵
b = [4; 12; 18];  % 约束条件向量% 定义变量的边界
lb = [0; 0];  % 变量下界% 使用linprog函数求解线性规划问题
[x, fval, exitflag] = linprog(f, A, b, [], [], lb);% 输出结果
if exitflag == 1fprintf('最优解:x = %.2f, y = %.2f\n', x(1), x(2));fprintf('最大化目标函数值:%.2f\n', -fval);
elsedisp('未找到最优解');
end

上述代码通过定义目标函数和约束条件,使用linprog函数求解线性规划问题。在这个例子中,我们的目标是最大化3x + 5y,并且有若干约束条件,最终得到了最优解。

Matlab中的线性规划函数

在Matlab中,常用的求解线性规划问题的函数是linproglinprog可以解决标准形式的线性规划问题,即最小化一个线性目标函数,受到一组线性不等式约束和等式约束条件的限制。其常见用法如下:

[x, fval, exitflag, output] = linprog(f, A, b, Aeq, beq, lb, ub);

参数解释:

  • f:目标函数系数。

  • A, b:不等式约束,形式为A * x <= b

  • Aeq, beq:等式约束,形式为Aeq * x = beq

  • lb, ub:变量的上下界。

  • x:最优解。

  • fval:目标函数在最优解处的值。

  • exitflag:求解器的退出状态。

  • output:包含更多求解信息的结构体。

1.2 投资的收益和风险

线性规划也常用于解决经济和金融领域的投资问题。投资中的收益和风险是两个核心因素,需要在一定约束条件下权衡它们的关系。比如,在资金有限的情况下,如何通过合理配置投资组合以最大化收益的同时尽可能降低风险,是一个典型的优化问题。通过线性规划,投资者可以找到最优的投资分配方案。

在实际投资中,线性规划可以帮助解决以下问题:

  • 资产配置:如何在多个资产之间进行资金分配,以最大化收益或最小化风险。

  • 风险控制:在收益预期不变的情况下,如何最小化投资组合的风险。

  • 多目标优化:在兼顾收益和风险的同时,还要考虑流动性等其他目标。

项目描述
投资目标最大化收益、最小化风险
约束条件资金有限、市场风险等
方法线性规划模型
Matlab代码示例

以下是一个简单的投资组合优化的例子,使用Matlab进行求解:

% 定义目标函数(收益最大化,取负表示最小化)
f = [-0.12; -0.10; -0.14];  % 三种投资方式的年化收益率% 定义约束条件
A = [1, 1, 1; 0.1, 0.2, 0.15];  % 总资金约束,风险约束
b = [1; 0.18];  % 资金总量为1,风险控制在0.18以内% 定义变量的边界
lb = [0; 0; 0];  % 变量下界
ub = [1; 1; 1];  % 变量上界% 使用linprog函数求解线性规划问题
[x, fval, exitflag] = linprog(f, A, b, [], [], lb, ub);% 输出结果
if exitflag == 1fprintf('最优投资组合:x1 = %.2f, x2 = %.2f, x3 = %.2f\n', x(1), x(2), x(3));fprintf('最大化收益:%.2f\n', -fval);
elsedisp('未找到最优解');
end

这个例子中,我们假设有三种投资方式,分别具有不同的年化收益率。我们希望在资金总量为1的情况下,控制风险在一定范围内,并且找到最大化收益的投资组合。

在投资组合优化中,线性规划的优势在于其计算效率高,尤其适合处理具有明确线性关系的投资问题。当投资者需要快速制定决策时,线性规划是一种非常有效的方法。

习题 1

在第一章结束后,提供了相关的习题以帮助读者理解和掌握线性规划的基础知识。习题1主要涉及一些简单的线性规划模型建立和求解,通过练习,读者可以熟练掌握线性规划问题的建模步骤,并加深对其应用的理解。

以下是一些习题示例:

  1. 生产计划问题:某工厂生产两种产品A和B,单位利润分别为5元和8元。已知每天最多可以生产A和B的数量之和不超过100个,且B的数量不超过A的两倍,原材料的供应量限制每天最多生产150个产品。请建立一个线性规划模型,求使工厂利润最大化的生产方案。

  2. 物流运输问题:某公司需要将货物从3个工厂运送到4个销售点,已知每个工厂的生产能力和每个销售点的需求量,以及工厂到销售点之间的运输成本。请建立一个线性规划模型,求使运输总成本最小的运输方案。

  3. 资源分配问题:某项目需要分配有限的预算、时间和人力资源,以完成若干个子任务。每个子任务有不同的资源需求和优先级。请建立一个线性规划模型,优化资源分配,使得项目的总收益最大化。

通过这些习题,读者可以深入理解线性规划在不同应用场景中的建模和求解方法。

总结

第一章为线性规划奠定了基础,帮助读者理解线性规划问题的构建和求解方法。线性规划的核心在于找到最优解,使得目标函数在给定约束条件下达到最优。通过实际应用中的案例,线性规划展示了其在资源优化、收益最大化等方面的巨大潜力。在实际应用中,线性规划不仅帮助企业在生产和物流方面做出最佳决策,也在金融投资、资源管理等多个领域发挥着重要作用。接下来的章节将继续探讨数学规划的其他方面,包括整数规划和非线性规划等,这些内容将进一步扩展读者对优化问题的理解和解决方案的选择能力。

相关文章:

数学建模算法与应用 第1章 线性规划

第1章 线性规划 线性规划是数学规划领域的重要分支&#xff0c;广泛应用于资源配置、生产计划、物流管理等领域。它主要用于解决如何在满足一定约束条件下&#xff0c;使目标函数&#xff08;如成本、利润等&#xff09;达到最大或最小的问题。第一章将介绍线性规划的基本概念…...

使用 systemd 设置 PHP 程序为服务

使用 systemd 设置 PHP 程序为服务 在现代 Linux 系统中&#xff0c;systemd 是用于管理和控制服务的标准工具。通过 systemd&#xff0c;我们可以轻松地将 PHP 程序配置为后台运行的系统服务&#xff0c;从而实现自动化启动、重启和日志记录等功能。本文将介绍如何为 PHP 程序…...

HRNET模型实现钢板表面缺陷检测

关于深度实战社区 我们是一个深度学习领域的独立工作室。团队成员有&#xff1a;中科大硕士、纽约大学硕士、浙江大学硕士、华东理工博士等&#xff0c;曾在腾讯、百度、德勤等担任算法工程师/产品经理。全网20多万粉丝&#xff0c;拥有2篇国家级人工智能发明专利。 社区特色…...

28 基于51单片机的两路电压检测(ADC0808)

目录 一、主要功能 二、硬件资源 三、程序编程 四、实现现象 一、主要功能 基于51单片机&#xff0c;通过ADC0808获取两路电压&#xff0c;通过LCD1602显示 二、硬件资源 基于KEIL5编写C代码&#xff0c;PROTEUS8.15进行仿真&#xff0c;全部资源在页尾&#xff0c;提供…...

SpringBootTest Mockito 虚实结合编写测试

SpringBootTest & Mockito 虚实结合测试 起因 单一使用mockito&#xff0c;会出现很多mock困难的问题&#xff0c;导致测试编写过程太长&#xff0c;太恶心 单一使用springboottest&#xff0c;会遇到需要外部接口的地方&#xff0c;这个时候就非得去真实调用才行。也很恶…...

国内外网络安全政策动态(2024年9月)

国内网络安全政策动态 ▶︎ 1.三项智能网联汽车强制性国家标准正式发布 9月4日&#xff0c;工业和信息化部组织制定的GB 44495—2024《汽车整车信息安全技术要求》、GB 44496—2024《汽车软件升级通用技术要求》和GB 44497—2024《智能网联汽车 自动驾驶数据记录系统》三项强制…...

使用Android studio进行Unit Test中遇到的问题记录

1、模块本身代码运行不起来 提示&#xff1a; Cannot resolve method ‘getVolumes’ in ‘StorageManager’ Cannot resolve method ‘registerListener’ in ‘StorageManager’ Cannot resolve method ‘unregisterListener’ in ‘StorageManager’ 查看Android 源码&…...

智能运维与问题诊断工具:提升生产环境的安全稳定性

引言 在当今复杂的IT环境中,确保生产系统的安全稳定运行是一项巨大挑战。随着技术的进步,智能运维和问题诊断工具应运而生,为IT团队提供了强大的支持。本文将介绍一系列先进的工具,这些工具利用人工智能、机器学习和自动化技术,帮助组织提高系统可靠性、加速问题解决、优…...

【MAUI】CommunityToolkit社区工具包介绍

一、为什么需要声明式开发 .NET的MVVM,始于WPF,很古典,它甚至可能是现代前端框架“声明式开发”的鼻祖。声明式开发,之所以出现,是因为命令式开发在UI层和代码层上无法解耦的问题。如下图所示: 1、命令式开发:后台代码需要调用UI层的控件(label.Text),如果更新UI层…...

【答疑解惑】图文深入详解undo和redo的区别及其底层逻辑

题记&#xff1a;最近有些人问我&#xff0c;undo和redo到底是什么关系&#xff0c;他们中不乏已经入行3-4年的同学&#xff0c;今天咱们就来深入探讨下到底什么是undo和redo&#xff0c;他们分别做什么&#xff0c;底层逻辑原理是什么等等。 1. undo 1.1 undo的存储结构 Un…...

低通滤波、反相放大器电路

1 简介 这种可调低通滤波、反相放大器电路可将信号电平放大 26dB 或 20V/V。R2 和 C1 会为此电路设置截止频率。此电路的频率响应与无源 RC 滤波器的相同&#xff0c;除非输出按放大器的通带增益进行放大。低通滤波器通常用于音频信号链&#xff0c;此滤波器有时也称为低音增强…...

SpringBoot助力服装生产流程优化

1 绪论 1.1 研究背景 当今时代是飞速发展的信息时代。在各行各业中离不开信息处理&#xff0c;这正是计算机被广泛应用于信息管理系统的环境。计算机的最大好处在于利用它能够进行信息管理。使用计算机进行信息控制&#xff0c;不仅提高了工作效率&#xff0c;而且大大的提高…...

【机器学习】线性回归算法简介 及 数学实现方法

线性回归 简介 利用 回归方程(函数) 对 一个或多个自变量(特征值)和因变量(目标值)之间 关系进行建模的一种分析方式。 数学公式&#xff1a; ℎ_(w) w_1x_1 w_2x_2 w_3x_3 … b w^Txb 概念 ​ 利用回归方程(函数) 对 一个或多个自变量(特征值)和因变量(目标值)之间 关…...

设计模式的学习

OO:Object-Oriented 面向对象 --- 《Head First设计模式》 这本书是用java写的&#xff0c;我是写C的&#xff0c;用C来写相关的代码 --- p2&#xff08;第二页&#xff09; #ifndef DUCK_H #define DUCK_H/*** brief The Duck class 鸭子类*/ class Duck { public:D…...

wordpress发邮件SMTP服务器配置步骤指南?

wordpress发邮件功能如何优化&#xff1f;怎么用wordpress发信&#xff1f; 由于WordPress默认的邮件发送功能可能不够稳定&#xff0c;配置SMTP服务器成为了许多网站管理员的选择。AokSend将详细介绍如何在WordPress中配置SMTP服务器&#xff0c;以确保邮件能够顺利发送。 w…...

胤娲科技:机械臂「叛逃」记——自由游走,再悄然合体

夜深人静&#xff0c;你正沉浸在梦乡的前奏&#xff0c;突然意识到房间的灯还亮着。此刻的你&#xff0c;是否幻想过有一只无形的手&#xff0c;轻盈地飘过&#xff0c;帮你熄灭那盏碍眼的灯&#xff1f; 又或者&#xff0c;你正窝在沙发上&#xff0c;享受电视剧的紧张刺激&am…...

分布式事务讲解 - 2PC、3PC、TCC

分布式事务讲解 - 2PC、3PC、TCC 前置知识 BASE理论&#xff1a; BASE是Basically Availbale(基本可用)、Soft state(软状态)、Eventually consistent(最终一致性)三个词语的缩写。BASE理论是对CAP理论中AP的一个扩展&#xff0c;通过牺牲强一致性来获得可用性&#xff0c;当…...

前端基础面试题·第四篇——Vue(其二)

1.Vue中路由传参 1.params传参 params 传参是通过URL路径来传递参数&#xff0c;这种方式传递的参数是必选的。这种传参方式需要在路由配置时在路由路径位置提前指定参数。 路由配置 const router new VueRouter({routes: [{path: /user/:id, // 这里的:id就是参数name: u…...

PHP反射

文章目录 介绍基本用法基本的反射示例1. 反射类2. 反射方法3. 反射属性4.反射全局函数5.反射函数的参数 优势和注意事项优势&#xff1a;注意事项&#xff1a; 介绍 PHP反射是一种强大的机制&#xff0c;允许在运行时检查类、接口、方法、属性等的结构和元数据。它可以用于许多…...

Gated Transformer Networks for Multivariate Time Series Classification

博客贡献人 徐宁 作者 Minghao Liu , Shengqi Ren , Siyuan Ma , Jiahui Jiao , Yizhou Chen , Zhiguang Wang(Facebook AI) and Wei Song∗ 标签 多元时间序列分类&#xff0c;Transformer&#xff0c;门控 摘要 用于时间序列分类的深度学习模型&#xff08;主要是卷积网…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学&#xff08;silicon photonics&#xff09;的光波导&#xff08;optical waveguide&#xff09;芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中&#xff0c;光既是波又是粒子。光子本…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会&#xff0c;玩音乐的本质就是玩电网。火电声音偏暖&#xff0c;水电偏冷&#xff0c;风电偏空旷。至于太阳能发的电&#xff0c;则略显朦胧和单薄。 不知你是否有感觉&#xff0c;近两年家里的音响声音越来越冷&#xff0c;听起来越来越单薄&#xff1f; —…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述&#xff1a;海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而&#xff0c;目前该领域仍面临一个挑战&#xff0c;即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》

这段 Python 代码是一个完整的 知识库数据库操作模块&#xff0c;用于对本地知识库系统中的知识库进行增删改查&#xff08;CRUD&#xff09;操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 &#x1f4d8; 一、整体功能概述 该模块…...

android13 app的触摸问题定位分析流程

一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...

毫米波雷达基础理论(3D+4D)

3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文&#xff1a; 一文入门汽车毫米波雷达基本原理 &#xff1a;https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...

AI语音助手的Python实现

引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...