当前位置: 首页 > news >正文

【五分钟学会】YOLO11 自定义数据集从训练到部署

数据集地址

数据集包含 360 张红血细胞图像及其注释文件,分为训练集与验证集。训练文件夹包含 300 张带有注释的图像。测试和验证文件夹都包含 60 张带有注释的图像。我们对原始数据集进行了一些修改以准备此 CBC 数据集,并将数据集分成三部分。在360张涂片图像中,首先使用300张带注释的血细胞图像作为训练集,然后将其余60张带有注释的图像用作测试集。CBC数据集地址如下:

https://github.com/MahmudulAlam/Complete-Blood-Cell-Count-Dataset

模型训练

准备好数据集以后,直接按下面的命令行运行即可:

yolo train model=yolo11n.pt data=cbc_dataset.yaml epochs=25 imgsz=640 batch=4

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

模型导出与测试

yolo export model=cbc_11.pt format=onnx
yolo predict model=cbc_11.pt source=./cbc

在这里插入图片描述
在这里插入图片描述

部署推理

转成ONNX格式文件以后,基于OpenVINO-Python部署推理,相关代码如下

frame = cv.imread(os.path.join("D:/cbc_analysis/data/", f))
bgr = format_yolov8(frame)
img_h, img_w, img_c = bgr.shape
​
start = time.time()
image = cv.dnn.blobFromImage(bgr, 1 / 255.0, (640, 640), swapRB=True, crop=False)
​
res = compiled_model([image])[output_layer] # 1x84x8400
rows = np.squeeze(res, 0).T
class_ids = []
confidences = []
boxes = []
x_factor = img_w / 640
y_factor = img_h / 640
​
​
for r in range(rows.shape[0]):
row = rows[r]
classes_scores = row[4:]
_, _, _, max_indx = cv.minMaxLoc(classes_scores)
class_id = max_indx[1]
if (classes_scores[class_id] > .25):
confidences.append(classes_scores[class_id])
class_ids.append(class_id)
x, y, w, h = row[0].item(), row[1].item(), row[2].item(), row[3].item()
left = int((x - 0.5 * w) * x_factor)
top = int((y - 0.5 * h) * y_factor)
width = int(w * x_factor)
height = int(h * y_factor)
box = np.array([left, top, width, height])
boxes.append(box)
​
indexes = cv.dnn.NMSBoxes(boxes, confidences, 0.25, 0.45)
for index in indexes:
box = boxes[index]
color = colors[int(class_ids[index]) % len(colors)]
rr = int((box[2] + box[3])/4)
cv.circle(frame, (box[0]+int(box[2]/2), box[1]+int(box[3]/2)), rr-4, color, 2)
cv.putText(frame, class_list[class_ids[index]], (box[0] + int(box[2] / 2), box[1] + int(box[3] / 2)),cv.FONT_HERSHEY_SIMPLEX, .5, (0, 0, 0))
cv.putText(frame, "gloomyfish@2024", (20, 45), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
​
cv.imshow("YOLO11+OpenVINO2024 RBC(Red Blood Cell) Count", frame)
cv.imwrite("D:/rbc_result.jpg", frame)
cv.waitKey(0)

在这里插入图片描述
在这里插入图片描述

总结

其实YOLO11 只是 YOLOv8的套娃版本,只要掌握YOLOv8,真的只需要五分钟就可以全面掌握YOLO11各种模型从训练到部署。玩转YOLOv8的分类、对象检测、实例分割、姿态评估、OBB检测、目标跟踪 六大模块

相关文章:

【五分钟学会】YOLO11 自定义数据集从训练到部署

数据集地址 数据集包含 360 张红血细胞图像及其注释文件,分为训练集与验证集。训练文件夹包含 300 张带有注释的图像。测试和验证文件夹都包含 60 张带有注释的图像。我们对原始数据集进行了一些修改以准备此 CBC 数据集,并将数据集分成三部分。在360张…...

Redis学习(十二)连接数不足报错及分析修复:ERR max number of clients reached.

目录 一、问题介绍二、问题分析2.1 redis-cli 登录2.2 info clients 查看连接数情况2.3 client list 查看具体连接情况2.4 分析连接空闲时长2.5 client list 根据客户端IP统计连接数 三、问题结论和解决3.1 问题结论:3.2 解决方案①:优化程序3.3 解决方案…...

八股文面试题总结(包含主流的面试经典题)

Java基础 1、JDK和JRE的区别是什么** JDK是Java开发工具包,JRE是Java运行时环境,二者的区别在于 JRE是Java程序运行所必须的,它包含jvm和一些Java的基础类库 JDK是Java程序开发所必须的,它包含JRE和一些开发工具 总结一下就是…...

一分钟掌握 Java22 新特性

1. 增强的模式匹配(Pattern Matching for Switch) Java 22 扩展了模式匹配的功能,允许在 switch 语句中使用模式匹配,从而使代码更加简洁和易读。 示例代码: public class PatternMatchingSwitchDemo {public stati…...

西安凭借入驻企业展示科技“硬”实力的数字媒体产业园

在古城西安的怀抱中,一座以科技“硬”实力为核心竞争力的数字媒体产业园——西安国际数字影像产业园,正以其独特的魅力和无限的潜力,吸引着全球的目光。这里,不仅是数字创意的孵化场,更是科技创新的策源地。 西安国际数…...

【网络安全】利用XSS、OAuth配置错误实现token窃取及账户接管 (ATO)

未经许可,不得转载。 文章目录 正文正文 目标:target.com 在子域sub1.target.com上,我发现了一个XSS漏洞。由于针对该子域的漏洞悬赏较低,我希望通过此漏洞将攻击升级至app.target.com,因为该子域的悬赏更高。 分析认证机制后,我发现: sub1.target.com:使用基于Cook…...

浙江所有省级医院体检报告查询上线浙里办!

在医院完成体检后不知道什么时候出报告 体检报告出来后又要跑一次医院去拿报告 历年体检报告没保管好 往年体检报告找不到了 ………… ​编辑 为解决这些问题,浙江省卫生健康委结合“两卡融合、一网通办”工作的推进,不断丰富电子健康医保卡的功能&#…...

支付宝支付Java+uniapp支付宝小程序

JS: request.post(/vip/pay, {//这是自己写的java支付接口id: this.vipInfo.id,payWay: alipay-mini}).then((res) > {let success (res2) > {//前端的支付成功回调函数this.$refs.popup.close();// 支付成功刷新当前页面setTimeout(() > {this.doGetVipI…...

Linux-磁盘优化的几个思路

优化前先看看性能指标 I/O 基准测试 fio(Flexible I/O Tester)正是最常用的文件系统和磁盘 I/O 性能基准测试工具。这类工具非常用,了解即可 应用程序优化 应用程序处于整个 I/O 栈的最上端,它可以通过系统调用,来调…...

【第三版 系统集成项目管理工程师】第15章 组织保障

持续更新。。。。。。。。。。。。。。。 【第三版】第十五章 组织保障 15.1信息和文档管理15.1.1 信息和文档1.信息系统信息-P5462.信息系统文档-P546 15.1.2 信息(文档)管理规则和方法1.信息(文档)编制规范-P5472.信息(文档)定级保护-P5483.信息(文档)配置管理-P549练习 15.…...

从编程视角看生命、爱、自由、生活的排列顺序

从编程视角看生命、爱、自由、生活的排列顺序 离开大学校园,踏入大厂成为一名算法工程师后,我常以编程思维看待生活中的事物。在思考生命、爱、自由和生活的排列顺序时,发现从编程角度分析这些概念会有独特见解。 一、生命——程序的核心代…...

Lumerical——属性编辑窗口的详解

一、几何选项卡(Geometry tab) 通过几何选项卡中的选项可以设定物件的位置和大小。 二、材料选项卡(Material tab) ① 材料(MATERIAL): 在该字段可以设置成材料数据库中包含的任何材料。数据库也有可能包含一些新材料,也可以对已经包含的材料进行编辑。如果选…...

08实战篇:972应用题(2024)思路解析

在本节中,你将学习到: 2024年972应用题的基本解题思路如何应对陌生的社会/学术热点问题,避免初见杀题目一:阐述搜索引擎的工作基本原理 关键词:搜索引擎、基本原理题型:基础概念题这是一道混在应用题中的简答题。根据《信息检索》一书中的P37内容回答即可(同时对应P45—…...

解决应用程序启动失败问题:由于找不到d3dx9_43.dll文件,如何快速有效地恢复和修复缺失的DLL组件

由于找不到d3dx9_43.dll,许多用户在启动某些游戏或者图形相关软件时遇到了棘手的问题。这个小小的DLL文件,虽然看似不起眼,却在众多基于DirectX 9技术构建的应用程序中扮演着至关重要的角色。对于游戏爱好者来说,当满心欢喜地准备…...

Ubuntu——双系统Ubuntu22.04系统安装和基础配置

文章目录 一、Ubuntu22.04双系统安装双系统安装和卸载 二、基础配置更新软件源搜狗输入法TimeShift上网 三、AI配置CondaCUDA12.6Pytorch2.3.0-cu121 四、额外配置Samba局域网文件共享系统 一、Ubuntu22.04双系统安装 双系统安装和卸载 双系统卸载安装Ubuntu双系统windows系统…...

stm32定时器中断和外部中断

一,中断系统的介绍 中断:在主程序运行过程中,出现了特定的中断触发条件(中断源),使得CPU暂停当前正在运行的程序,转而去处理中断程序,处理完成后又返回原来被暂停的位置继续运行 中…...

LeetCode 每日一题 2024/9/30-2024/10/6

记录了初步解题思路 以及本地实现代码;并不一定为最优 也希望大家能一起探讨 一起进步 目录 9/30 1845. 座位预约管理系统10/1 983. 最低票价10/2 1870. 准时到达的列车最小时速10/3 1928. 规定时间内到达终点的最小花费10/4 1227. 飞机座位分配概率10/5 2187. 完成…...

Redis篇(最佳实践)(持续更新迭代)

介绍一:键值设计 一、优雅的key结构 Redis 的 Key 虽然可以自定义,但最好遵循下面的几个最佳实践约定: 遵循基本格式:[业务名称]:[数据名]:[id]长度不超过 44 字节不包含特殊字符 例如: 我们的登录业务&#xff0…...

详细介绍pandas 在python中的用法

Pandas 是 Python 中非常流行的数据分析和处理库,特别适用于处理结构化数据。它构建在 NumPy 之上,提供了更高级的功能,例如数据清理、整理、筛选和统计分析。Pandas 的核心数据结构是 Series 和 DataFrame,分别用于处理一维数据和…...

八字命理测算系统开发-源码搭建

八字命理测算系统的开发是一个结合了传统命理学与现代科技的项目,旨在为用户提供基于个人出生年、月、日、时等信息的个性化命理分析和预测。以下是开发此类系统时需要考虑的关键步骤和技术要点: 一、前期准备 1.确定需求和目标用户 与客户或团队讨论&am…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM&#xff09…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...

Linux nano命令的基本使用

参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时,显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障

关键领域软件测试的"安全密码":Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力,从金融交易到交通管控,这些关乎国计民生的关键领域…...

学习一下用鸿蒙​​DevEco Studio HarmonyOS5实现百度地图

在鸿蒙(HarmonyOS5)中集成百度地图,可以通过以下步骤和技术方案实现。结合鸿蒙的分布式能力和百度地图的API,可以构建跨设备的定位、导航和地图展示功能。 ​​1. 鸿蒙环境准备​​ ​​开发工具​​:下载安装 ​​De…...

用鸿蒙HarmonyOS5实现国际象棋小游戏的过程

下面是一个基于鸿蒙OS (HarmonyOS) 的国际象棋小游戏的完整实现代码,使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├── …...

uni-app学习笔记二十七--设置底部菜单TabBar的样式

官方文档地址:uni.setTabBarItem(OBJECT) | uni-app官网 uni.setTabBarItem(OBJECT) 动态设置 tabBar 某一项的内容,通常写在项目的App.vue的onLaunch方法中,用于项目启动时立即执行 重要参数: indexnumber是tabBar 的哪一项&…...