YOLOv5改进——添加SimAM注意力机制
目录
一、SimAM注意力机制核心代码
二、修改common.py
三、修改yolo.py
三、建立yaml文件
四、验证
一、SimAM注意力机制核心代码
在models文件夹下新建modules文件夹,在modules文件夹下新建一个py文件。这里为simam.py。复制以下代码到文件里面。
import torch
import torch.nn as nnclass SimAM(torch.nn.Module):def __init__(self, channels = None, e_lambda = 1e-4):super(SimAM, self).__init__()self.activaton = nn.Sigmoid()self.e_lambda = e_lambdadef __repr__(self):s = self.__class__.__name__ + '('s += ('lambda=%f)' % self.e_lambda)return s@staticmethoddef get_module_name():return "simam"def forward(self, x):b, c, h, w = x.size()n = w * h - 1x_minus_mu_square = (x - x.mean(dim=[2,3], keepdim=True)).pow(2)y = x_minus_mu_square / (4 * (x_minus_mu_square.sum(dim=[2,3], keepdim=True) / n + self.e_lambda)) + 0.5return x * self.activaton(y)
注意:很多改进教程都是将代码直接复制到common.py文件,如果改进机制多了容易造成混乱。建议创建一个modules文件夹,将改进机制放里面方便管理。
二、修改common.py
在common.py文件中,在前面的部分添加以下代码,导入GhostV2.py的内容:
from models.modules.simam import *
三、修改yolo.py
在yolo.py文件中,在导入common模块的上面一行添加以下代码,导入GhostV2.py的内容:
from models.modules.simam import *
注意:这里位置不要搞错,不然可能会找不到导入的模块。
如下图所示:

找到parse_model函数,将SimAM模块加入,如下图所示:

三、建立yaml文件
在models文件夹下,复制yolov5s.yaml文件,粘贴并重命名为yolov5s-simam.yaml。
这里将SimAM注意力机制加在backbone最末端。这样可以使注意力机制看到整个backbone部分的特征图,将具有全局视野,类似于一个小的transformer结构。
如图所示,将SimAM注意力机制加在SPPF的下一层:

加了层数后,后面的head部分也得修改,如下图所示:
修改前:

修改后:

加一层就在参数上加一,若加多个机制,依此类推。
yolov5s-simam.yaml完整代码如下:
# Ultralytics YOLOv5 , AGPL-3.0 license# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:- [10, 13, 16, 30, 33, 23] # P3/8- [30, 61, 62, 45, 59, 119] # P4/16- [116, 90, 156, 198, 373, 326] # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2[-1, 1, Conv, [128, 3, 2]], # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]], # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]], # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]], # 9[-1, 3, SimAM, [1024]], # 10]# YOLOv5 v6.0 head
head: [[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, "nearest"]],[[-1, 6], 1, Concat, [1]], # cat backbone P4[-1, 3, C3, [512, False]], # 14[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, "nearest"]],[[-1, 4], 1, Concat, [1]], # cat backbone P3[-1, 3, C3, [256, False]], # 18 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 15], 1, Concat, [1]], # cat head P4[-1, 3, C3, [512, False]], # 21 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 11], 1, Concat, [1]], # cat head P5[-1, 3, C3, [1024, False]], # 24 (P5/32-large)[[18, 21, 24], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)]
至此更改完成。
四、验证
在yolo.py 文件里面的配置文件改为刚才自定义的yolov5s-simam.yaml

ctrl+shift+p 在弹出框窗口搜索Python:选择解释器,选择自己创建的Python虚拟环境,这里是yolo。

运行yolo.py,出现刚刚加入的SimAM注意力机制,说明加入成功。
相关文章:
YOLOv5改进——添加SimAM注意力机制
目录 一、SimAM注意力机制核心代码 二、修改common.py 三、修改yolo.py 三、建立yaml文件 四、验证 一、SimAM注意力机制核心代码 在models文件夹下新建modules文件夹,在modules文件夹下新建一个py文件。这里为simam.py。复制以下代码到文件里面。 import…...
SQL 自学:表别名的运用与对被联结表使用聚集函数
一、表别名的概念与作用 (一)表别名的定义 表别名是为表指定的临时名称,在 SQL 查询中使用别名可以简化表名,提高代码的可读性和可维护性。当表名较长或在复杂的查询中多次引用表时,使用表别名可以避免重复输入冗长的…...
jmeter学习(2)变量
1)用户定义的变量 路径:添加-》配置元件-》用户定义的变量 用户定义的变量是全局变量,可以跨线程组被调用,但在启动运行时获取一次值,在运行过程中不再动态获取值。 注意的是,如果在某个线程组定义了全…...
【C#生态园】C#文件压缩库全面比较:选择最适合你的库
从核心功能到API概览:深度解析六大C#文件压缩库 前言 在软件开发过程中,文件的压缩和解压缩是一个常见的需求。针对C#开发者而言,选择合适的文件压缩库可以极大地简化开发工作。本文将介绍几个常用的C#文件压缩库,包括其核心功能…...
【测试】接口测试与接口自动化
壹、接口测试基础 一、接口测试概念 I、基础概念 是测试系统组件间接口的一种测试。 主要用于检测外部系统与系统间、内部子系统间的交互点;测试重点检查数据的交换、传递和控制管理过程,以及系统间的相互逻辑依赖关系。 内部接口调用相当于函数调用&am…...
Android设置边框圆角
在Android开发中,圆角设计十分常见,那么实现边框圆角有几种形式呢? 文章目录 设置圆角边框样式使用ClipToOutline进行裁切最后 设置圆角边框样式 常见的方式是在drawable文件夹下设置一个xml文件的边框样式,比如 <shape andro…...
SpringBoot项目打成jar包,在其他项目中引用
1、首先新建一个SpringBoot工程 记得要将Gradle换成Maven 2、新建一个要引用的方法 3、打包的时候要注意: ① 不能使用springboot项目自带的打包插件进行打包,下面是自带的: ②要换成传统项目的maven打包,如下图: 依…...
【音频可视化】通过canvas绘制音频波形图
前言 这两天写项目刚好遇到Ai对话相关的需求,需要录音功能,绘制录制波形图,写了一个函数用canvas实现可视化,保留分享一下,有需要的直接粘贴即可,使用时传入一个1024长的,0-255大小的Uint8Arra…...
解决github每次pull push输入密码问题
# 解决git pull/push每次都需要输入密码问题 git bash进入你的项目目录,输入: git config --global credential.helper store然后你会在你本地生成一个文本,上边记录你的账号和密码。配置项写入到 "C:\Users\用户名\ .gitconfig" …...
Java重修笔记 第六十四天 坦克大战(十四)IO 流 - 标准输入输出流、InputStreamReader 和 OutputStreamWriter
标准输入输出流 1. System.in 标准输入流 本质上是一个InputString,对应键盘,表示从键盘输入。 定义:public final static InputStream in null; 所以 Scanner scanner new Scanner(System.in); 会从键盘中获取数据 2. System.out 标准输…...
prctl的函数和pthread_self函数
1.prctl的函数原型如下: #include<sys/prctl.h> prctl(PR_SET_NAME, “process_name”);第一个参数是操作类型,指定PR_SET_NAME(对应数字15),即设置进程名; 第二个参数是进程名字符串,…...
Vim 命令行模式下的常用命令
Vim 命令行模式下的常用命令 文件操作: :w :保存当前文件。:w filename :将当前内容另存为指定的 filename 。:q :退出 Vim,如果文件有修改但未保存,会提示错误。:q! :强制退出 Vim,…...
【动态规划-最长递增子序列(LIS)】力扣2826. 将三个组排序
给你一个整数数组 nums 。nums 的每个元素是 1,2 或 3。在每次操作中,你可以删除 nums 中的一个元素。返回使 nums 成为 非递减 顺序所需操作数的 最小值。 示例 1: 输入:nums [2,1,3,2,1] 输出:3 解释: …...
Elastic Stack--16--ES三种分页策略
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 方式一:from size实现原理使用方式优缺点 方式二:scroll实现原理使用方式优缺点 方式三:search_after实现原理使用方式优缺点 三…...
[LeetCode] 315. 计算右侧小于当前元素的个数
题目描述: 给你一个整数数组 nums ,按要求返回一个新数组 counts 。数组 counts 有该性质: counts[i] 的值是 nums[i] 右侧小于 nums[i] 的元素的数量。 题目链接: . - 力扣(LeetCode) 题目主要思路&a…...
【hot100-java】二叉树展开为链表
二叉树篇。 /*** Definition for a binary tree node.* public class TreeNode {* int val;* TreeNode left;* TreeNode right;* TreeNode() {}* TreeNode(int val) { this.val val; }* TreeNode(int val, TreeNode left, TreeNode right) {* …...
如何在在 YOLOv3模型中添加Attention机制
在YOLOv3模型中添加Attention机制需要以下几个步骤: 1. 规定格式 当添加新的模块(如Attention机制模块)时,需要像定义[convolutional]、[maxpool]等层在cfg文件中的格式一样,对新模块进行格式规定。例如对于SE模块&a…...
单点登录Apereo CAS 7.1安装配置教程
笔者目前正在做一个单点登录的课题,历时较长总算摸到一些门路,其中的辛酸不易按下不表。截至本文发布,CAS的最新版本为7.1。由于涉及到课题内容,而且内容比较新,整理试验不容易,暂时只对VIP开放,后续课题完成后会完全开放,敬请谅解。 CAS项目区别 在CAS的项目选择上,…...
windows C++-移除界面工作线程(一)
本文档演示了如何使用并发运行时将 Microsoft 基础类 (MFC) 应用程序中由用户界面 (UI) 线程执行的工作移动到工作线程。 本文档还演示了如何提高冗长绘制操作的性能。 通过将阻塞性操作(例如,绘制)卸载到工作线程来从 UI 线程中移除工作&am…...
Qt小bug — LINK : fatal error LNK1158: 无法运行“rc.exe“
Qt小bug —— LINK :fatal error LNK1158:无法运行"rc.exe" 环境 Qt 5.14.2 MSVC 2015 x64 现象 解决 在电脑上找到rc.exe 和rcdll.dll (一般在C:\Program Files(x86)\Windows Kits*\bin\x64下面)拷贝到 C:\Qt\Qt5…...
eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...
springboot整合VUE之在线教育管理系统简介
可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...
Rust 开发环境搭建
环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行: rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu 2、Hello World fn main() { println…...
