当前位置: 首页 > news >正文

YOLOv5改进——添加SimAM注意力机制

目录

一、SimAM注意力机制核心代码

二、修改common.py

三、修改yolo.py

​三、建立yaml文件 

四、验证


一、SimAM注意力机制核心代码

在models文件夹下新建modules文件夹,在modules文件夹下新建一个py文件。这里为simam.py。复制以下代码到文件里面。

import torch
import torch.nn as nnclass SimAM(torch.nn.Module):def __init__(self, channels = None, e_lambda = 1e-4):super(SimAM, self).__init__()self.activaton = nn.Sigmoid()self.e_lambda = e_lambdadef __repr__(self):s = self.__class__.__name__ + '('s += ('lambda=%f)' % self.e_lambda)return s@staticmethoddef get_module_name():return "simam"def forward(self, x):b, c, h, w = x.size()n = w * h - 1x_minus_mu_square = (x - x.mean(dim=[2,3], keepdim=True)).pow(2)y = x_minus_mu_square / (4 * (x_minus_mu_square.sum(dim=[2,3], keepdim=True) / n + self.e_lambda)) + 0.5return x * self.activaton(y)

注意:很多改进教程都是将代码直接复制到common.py文件,如果改进机制多了容易造成混乱。建议创建一个modules文件夹,将改进机制放里面方便管理。

二、修改common.py

在common.py文件中,在前面的部分添加以下代码,导入GhostV2.py的内容:

from models.modules.simam import *

三、修改yolo.py

在yolo.py文件中,在导入common模块的上面一行添加以下代码,导入GhostV2.py的内容:

from models.modules.simam import *

注意:这里位置不要搞错,不然可能会找不到导入的模块。

如下图所示: 

找到parse_model函数,将SimAM模块加入,如下图所示:

​三、建立yaml文件 

在models文件夹下,复制yolov5s.yaml文件,粘贴并重命名为yolov5s-simam.yaml。

这里将SimAM注意力机制加在backbone最末端。这样可以使注意力机制看到整个backbone部分的特征图,将具有全局视野,类似于一个小的transformer结构。

如图所示,将SimAM注意力机制加在SPPF的下一层:

 加了层数后,后面的head部分也得修改,如下图所示:

修改前:

修改后: 

加一层就在参数上加一,若加多个机制,依此类推。

yolov5s-simam.yaml完整代码如下:

# Ultralytics YOLOv5 , AGPL-3.0 license# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:- [10, 13, 16, 30, 33, 23] # P3/8- [30, 61, 62, 45, 59, 119] # P4/16- [116, 90, 156, 198, 373, 326] # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2[-1, 1, Conv, [128, 3, 2]], # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]], # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]], # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]], # 9[-1, 3, SimAM, [1024]], # 10]# YOLOv5 v6.0 head
head: [[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, "nearest"]],[[-1, 6], 1, Concat, [1]], # cat backbone P4[-1, 3, C3, [512, False]], # 14[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, "nearest"]],[[-1, 4], 1, Concat, [1]], # cat backbone P3[-1, 3, C3, [256, False]], # 18 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 15], 1, Concat, [1]], # cat head P4[-1, 3, C3, [512, False]], # 21 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 11], 1, Concat, [1]], # cat head P5[-1, 3, C3, [1024, False]], # 24 (P5/32-large)[[18, 21, 24], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)]

至此更改完成。

四、验证

在yolo.py 文件里面的配置文件改为刚才自定义的yolov5s-simam.yaml

ctrl+shift+p 在弹出框窗口搜索Python:选择解释器,选择自己创建的Python虚拟环境,这里是yolo。

运行yolo.py,出现刚刚加入的SimAM注意力机制,说明加入成功。

相关文章:

YOLOv5改进——添加SimAM注意力机制

目录 一、SimAM注意力机制核心代码 二、修改common.py 三、修改yolo.py ​三、建立yaml文件 四、验证 一、SimAM注意力机制核心代码 在models文件夹下新建modules文件夹,在modules文件夹下新建一个py文件。这里为simam.py。复制以下代码到文件里面。 import…...

SQL 自学:表别名的运用与对被联结表使用聚集函数

一、表别名的概念与作用 (一)表别名的定义 表别名是为表指定的临时名称,在 SQL 查询中使用别名可以简化表名,提高代码的可读性和可维护性。当表名较长或在复杂的查询中多次引用表时,使用表别名可以避免重复输入冗长的…...

jmeter学习(2)变量

1)用户定义的变量 路径:添加-》配置元件-》用户定义的变量 用户定义的变量是全局变量,可以跨线程组被调用,但在启动运行时获取一次值,在运行过程中不再动态获取值。 注意的是,如果在某个线程组定义了全…...

【C#生态园】C#文件压缩库全面比较:选择最适合你的库

从核心功能到API概览:深度解析六大C#文件压缩库 前言 在软件开发过程中,文件的压缩和解压缩是一个常见的需求。针对C#开发者而言,选择合适的文件压缩库可以极大地简化开发工作。本文将介绍几个常用的C#文件压缩库,包括其核心功能…...

【测试】接口测试与接口自动化

壹、接口测试基础 一、接口测试概念 I、基础概念 是测试系统组件间接口的一种测试。 主要用于检测外部系统与系统间、内部子系统间的交互点;测试重点检查数据的交换、传递和控制管理过程,以及系统间的相互逻辑依赖关系。 内部接口调用相当于函数调用&am…...

Android设置边框圆角

在Android开发中&#xff0c;圆角设计十分常见&#xff0c;那么实现边框圆角有几种形式呢&#xff1f; 文章目录 设置圆角边框样式使用ClipToOutline进行裁切最后 设置圆角边框样式 常见的方式是在drawable文件夹下设置一个xml文件的边框样式&#xff0c;比如 <shape andro…...

SpringBoot项目打成jar包,在其他项目中引用

1、首先新建一个SpringBoot工程 记得要将Gradle换成Maven 2、新建一个要引用的方法 3、打包的时候要注意&#xff1a; ① 不能使用springboot项目自带的打包插件进行打包&#xff0c;下面是自带的&#xff1a; ②要换成传统项目的maven打包&#xff0c;如下图&#xff1a; 依…...

【音频可视化】通过canvas绘制音频波形图

前言 这两天写项目刚好遇到Ai对话相关的需求&#xff0c;需要录音功能&#xff0c;绘制录制波形图&#xff0c;写了一个函数用canvas实现可视化&#xff0c;保留分享一下&#xff0c;有需要的直接粘贴即可&#xff0c;使用时传入一个1024长的&#xff0c;0-255大小的Uint8Arra…...

解决github每次pull push输入密码问题

# 解决git pull/push每次都需要输入密码问题 git bash进入你的项目目录&#xff0c;输入&#xff1a; git config --global credential.helper store然后你会在你本地生成一个文本&#xff0c;上边记录你的账号和密码。配置项写入到 "C:\Users\用户名\ .gitconfig" …...

Java重修笔记 第六十四天 坦克大战(十四)IO 流 - 标准输入输出流、InputStreamReader 和 OutputStreamWriter

标准输入输出流 1. System.in 标准输入流 本质上是一个InputString&#xff0c;对应键盘&#xff0c;表示从键盘输入。 定义&#xff1a;public final static InputStream in null; 所以 Scanner scanner new Scanner(System.in); 会从键盘中获取数据 2. System.out 标准输…...

prctl的函数和pthread_self函数

1.prctl的函数原型如下&#xff1a; #include<sys/prctl.h> ​prctl(PR_SET_NAME, “process_name”);第一个参数是操作类型&#xff0c;指定PR_SET_NAME&#xff08;对应数字15&#xff09;&#xff0c;即设置进程名&#xff1b; 第二个参数是进程名字符串&#xff0c;…...

Vim 命令行模式下的常用命令

Vim 命令行模式下的常用命令 文件操作&#xff1a; :w &#xff1a;保存当前文件。:w filename &#xff1a;将当前内容另存为指定的 filename 。:q &#xff1a;退出 Vim&#xff0c;如果文件有修改但未保存&#xff0c;会提示错误。:q! &#xff1a;强制退出 Vim&#xff0c…...

【动态规划-最长递增子序列(LIS)】力扣2826. 将三个组排序

给你一个整数数组 nums 。nums 的每个元素是 1&#xff0c;2 或 3。在每次操作中&#xff0c;你可以删除 nums 中的一个元素。返回使 nums 成为 非递减 顺序所需操作数的 最小值。 示例 1&#xff1a; 输入&#xff1a;nums [2,1,3,2,1] 输出&#xff1a;3 解释&#xff1a; …...

Elastic Stack--16--ES三种分页策略

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 方式一&#xff1a;from size实现原理使用方式优缺点 方式二&#xff1a;scroll实现原理使用方式优缺点 方式三&#xff1a;search_after实现原理使用方式优缺点 三…...

[LeetCode] 315. 计算右侧小于当前元素的个数

题目描述&#xff1a; 给你一个整数数组 nums &#xff0c;按要求返回一个新数组 counts 。数组 counts 有该性质&#xff1a; counts[i] 的值是 nums[i] 右侧小于 nums[i] 的元素的数量。 题目链接&#xff1a; . - 力扣&#xff08;LeetCode&#xff09; 题目主要思路&a…...

【hot100-java】二叉树展开为链表

二叉树篇。 /*** Definition for a binary tree node.* public class TreeNode {* int val;* TreeNode left;* TreeNode right;* TreeNode() {}* TreeNode(int val) { this.val val; }* TreeNode(int val, TreeNode left, TreeNode right) {* …...

如何在在 YOLOv3模型中添加Attention机制

在YOLOv3模型中添加Attention机制需要以下几个步骤&#xff1a; 1. 规定格式 当添加新的模块&#xff08;如Attention机制模块&#xff09;时&#xff0c;需要像定义[convolutional]、[maxpool]等层在cfg文件中的格式一样&#xff0c;对新模块进行格式规定。例如对于SE模块&a…...

单点登录Apereo CAS 7.1安装配置教程

笔者目前正在做一个单点登录的课题,历时较长总算摸到一些门路,其中的辛酸不易按下不表。截至本文发布,CAS的最新版本为7.1。由于涉及到课题内容,而且内容比较新,整理试验不容易,暂时只对VIP开放,后续课题完成后会完全开放,敬请谅解。 CAS项目区别 在CAS的项目选择上,…...

windows C++-移除界面工作线程(一)

本文档演示了如何使用并发运行时将 Microsoft 基础类 (MFC) 应用程序中由用户界面 (UI) 线程执行的工作移动到工作线程。 本文档还演示了如何提高冗长绘制操作的性能。 通过将阻塞性操作&#xff08;例如&#xff0c;绘制&#xff09;卸载到工作线程来从 UI 线程中移除工作&am…...

Qt小bug — LINK : fatal error LNK1158: 无法运行“rc.exe“

Qt小bug —— LINK &#xff1a;fatal error LNK1158&#xff1a;无法运行"rc.exe" 环境 Qt 5.14.2 MSVC 2015 x64 现象 解决 在电脑上找到rc.exe 和rcdll.dll &#xff08;一般在C:\Program Files(x86)\Windows Kits*\bin\x64下面&#xff09;拷贝到 C:\Qt\Qt5…...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版&#xff0c;柱状图PPT模版&#xff0c;线状图PPT模版&#xff0c;折线图PPT模版&#xff0c;饼状图PPT模版&#xff0c;雷达图PPT模版&#xff0c;树状图PPT模版 图表类系列各种样式PPT模版分享&#xff1a;图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

【Go语言基础【13】】函数、闭包、方法

文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数&#xff08;函数作为参数、返回值&#xff09; 三、匿名函数与闭包1. 匿名函数&#xff08;Lambda函…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

MySQL:分区的基本使用

目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区&#xff08;Partitioning&#xff09;是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分&#xff08;分区&#xff09;可以独立存储、管理和优化&#xff0c;…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案

在大数据时代&#xff0c;海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构&#xff0c;在处理大规模数据抓取任务时展现出强大的能力。然而&#xff0c;随着业务规模的不断扩大和数据抓取需求的日益复杂&#xff0c;传统…...