【深度学习基础模型】液态状态机(Liquid State Machines, LSM)详细理解并附实现代码。
【深度学习基础模型】液态状态机(Liquid State Machines, LSM)详细理解并附实现代码。
【深度学习基础模型】液态状态机(Liquid State Machines, LSM)详细理解并附实现代码。
文章目录
- 【深度学习基础模型】液态状态机(Liquid State Machines, LSM)详细理解并附实现代码。
- 1. 算法提出
- 2. 概述
- 3. 发展
- 4. 应用
- 5. 优缺点
- 6. Python代码实现
- 7. 总结
参考地址:https://www.asimovinstitute.org/neural-network-zoo/
论文地址:https://igi-web.tugraz.at/people/maass/psfiles/130.pdf
欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
1. 算法提出
液态状态机(Liquid State Machine, LSM)由Wolfgang Maass于2002年首次提出,是一种基于脉冲神经网络(Spiking Neural Network, SNN)的计算模型。LSM灵感来源于大脑的处理机制,模拟了神经元之间的突触传递和时序性活动。其核心思想是利用神经元的脉冲发射和累积机制,在输入信号的动态变化中捕捉时序信息。
2. 概述
LSM的基本结构类似于一种“随机液体”,在输入刺激时能够产生动态的、时变的响应。与传统神经网络中的sigmoid或ReLU激活函数不同,LSM使用阈值激活函数,每个神经元在累积到一定程度后,会通过脉冲向其他神经元释放“能量”。这种机制使LSM能够有效处理时序信号,在输入信号的不同阶段能够做出相应的反应。
LSM主要包含两部分:
- 液态层(Liquid Layer):通过一组神经元随机连接形成的网络,输入信号经过液态层后会生成复杂的时空响应。
- 读取层(Readout Layer):从液态层的状态中提取出有用信息,常用的是线性分类器。
3. 发展
LSM自提出以来,作为一种SNN模型,发展主要体现在神经科学和计算机科学交叉领域。由于其时序处理优势,LSM逐渐在脑科学、神经网络仿真、认知计算等领域获得应用。近年来,随着脉冲神经网络硬件加速的进步(如基于神经形态芯片的实现),LSM的研究热度逐渐上升。
4. 应用
LSM主要用于处理时序数据,特别是在处理神经信号、声音、视频以及控制任务中具有独特优势。它的应用场景包括但不限于:
- 语音识别:能够处理连续的声音信号,通过动态的液态层响应捕捉语音中的时间特征。
- 脑机接口:LSM能够有效地处理和解析神经系统信号,用于脑机接口系统的实时解码。
- 机器人控制:在需要快速响应环境变化的控制任务中,LSM通过时空模式识别提供了高效的决策机制。
5. 优缺点
优点:
- 能够处理时序数据,具有良好的时间动态响应能力。
- 模拟生物神经网络的脉冲发射机制,适合神经形态计算。
缺点:
- 训练复杂,特别是脉冲神经网络的调参难度较高。
- 计算复杂度较大,尤其是在没有硬件加速时,效率不如传统深度神经网络。
6. Python代码实现
以下是一个简单的LSM示例,利用脉冲神经元模型实现:
import numpy as np
import matplotlib.pyplot as plt# 定义脉冲神经元类
class SpikingNeuron:def __init__(self, threshold=1.0):self.potential = 0.0 # 神经元电位self.threshold = threshold # 阈值self.spike = False # 是否发射脉冲def update(self, input_current):self.potential += input_current # 更新电位if self.potential >= self.threshold:self.spike = True # 达到阈值,发射脉冲self.potential = 0.0 # 重置电位else:self.spike = Falsedef get_output(self):return 1.0 if self.spike else 0.0# 定义液态状态机类
class LiquidStateMachine:def __init__(self, num_neurons, input_size):self.neurons = [SpikingNeuron() for _ in range(num_neurons)]self.input_weights = np.random.rand(num_neurons, input_size) # 随机连接输入权重def step(self, input_signal):outputs = []for i, neuron in enumerate(self.neurons):input_current = np.dot(self.input_weights[i], input_signal) # 计算输入电流neuron.update(input_current)outputs.append(neuron.get_output())return outputs# 模拟输入信号
time_steps = 100
input_signal = np.sin(np.linspace(0, 4 * np.pi, time_steps)) # 正弦信号作为输入# 初始化LSM
lsm = LiquidStateMachine(num_neurons=10, input_size=1)# 存储神经元输出
lsm_outputs = []# 模拟过程
for t in range(time_steps):input_val = [input_signal[t]] # 输入值output = lsm.step(input_val) # 通过液态状态机lsm_outputs.append(output)# 可视化LSM的输出
plt.imshow(np.array(lsm_outputs).T, aspect='auto', cmap='gray')
plt.title("Liquid State Machine Outputs")
plt.xlabel("Time Step")
plt.ylabel("Neuron Index")
plt.show()
代码解释:
SpikingNeuron
:这是一个简单的脉冲神经元模型,它根据输入电流更新电位。当电位达到阈值时,神经元发射脉冲,并重置电位。LiquidStateMachine
:LSM由多个脉冲神经元组成,每个神经元通过随机权重与输入信号连接。每个时间步,LSM通过神经元的动态状态输出时序信号的特征。- 输入信号为正弦波,通过LSM的每个神经元产生脉冲输出,最后结果通过
matplotlib
进行可视化,展示了每个神经元在不同时间步的激活情况。
7. 总结
LSM作为一种脉冲神经网络,能够在时序数据处理中表现出色。虽然LSM的训练和计算复杂,但其通过时间上的脉冲发射机制,能够模拟生物神经网络的某些特性,在语音识别、脑机接口等领域具有广泛应用前景。
相关文章:

【深度学习基础模型】液态状态机(Liquid State Machines, LSM)详细理解并附实现代码。
【深度学习基础模型】液态状态机(Liquid State Machines, LSM)详细理解并附实现代码。 【深度学习基础模型】液态状态机(Liquid State Machines, LSM)详细理解并附实现代码。 文章目录 【深度学习基础模型】液态状态机࿰…...

深入理解链表(SList)操作
目录: 一、 链表介绍1.1、 为什么引入链表1.2、 链表的概念及结构1.3、 链表的分类 二、 无头单向非[循环链表](https://so.csdn.net/so/search?q循环链表&spm1001.2101.3001.7020)的实现2.1、 [单链表](https://so.csdn.net/so/search?q单链表&spm1001.2…...
03. prometheus 监控 Linux 主机
文章目录 一、prometheus 监控 Linux 主机二、防火墙打开端口1. 方式一:使用 iptables 添加白名单(推荐使用):2. 方式二:重载防火墙 一、prometheus 监控 Linux 主机 1. 官网下载 node_exporter 官网:htt…...

AI占据2024诺贝尔两大奖项,是否预示着未来AI即一切?
本次诺贝尔物理学和学奖的获得者都与AI息息相关,可谓是“AI领域的大丰收”。 2024年诺贝尔物理学奖揭晓:瑞典皇家科学院公布了2024年诺贝尔物理学奖的获得者。他们是美国的约翰霍普菲尔德(John J. Hopfield),以及加拿…...

[已解决] Install PyTorch 报错 —— OpenOccupancy 配环境
目录 关于 常见的初始化报错 环境推荐 torch, torchvision & torchaudio cudatoolkit 本地pip安装方法 关于 OpenOccupancy: 语义占用感知对于自动驾驶至关重要,因为自动驾驶汽车需要对3D城市结构进行细粒度感知。然而,现有的相关基准在城市场…...

6. PH47 代码框架硬件开发环境搭建
概述 PH47代码框架的硬件开发环境搭建同样简单, 建立基本的 PH47 框架学习或二次开发的硬件开发环境所需设备如下: BBP 飞控板及相关软硬件: BBP飞控板,或者至少一块Stm32F411核心板(WeAct Studio)Stm32程序烧录工具…...
package.json配置
package.json配置 描述配置文件配置脚本配置依赖配置发布配置系统配置第三方配置 描述配置 name : 项目名称,第三方包可以通过npm install 包名安装 "name":"react"version : 项目版本,项目版本号 "version" : "18.2…...

视频怎么转gif动图?5个简单转换方法快来学(详细教程)
相信大家在社交平台上会经常看到一些有趣的gif动图表情包,有些小伙伴就会问:这些GIF动图是如何制作的呢?一般GIF动图表情包可以用视频来制作,今天小编就来给大家分享几个视频转成GIF动图的方法,相信通过以下的几个方法…...

10月更新:优维EasyOps®需求解决更彻底,功能体验再升级
升 级 不 止 步 欢迎来到 需求至上,功能完善 的 \ EasyOps 7.5版本 / 👇 >> 联动架构视图:深度融合监控与资源拓扑 传统上,依赖监控态势感知系统固有的分层拓扑结构虽有其优势,但在处理复杂系统尤其是核心数…...
黑马javaWeb笔记重点备份1:三层架构、IOC、DI
来自:【黑马程序员JavaWeb开发教程,实现javaweb企业开发全流程(涵盖SpringMyBatisSpringMVCSpringBoot等)】 https://www.bilibili.com/video/BV1m84y1w7Tb/?p75&share_sourcecopy_web&vd_source9332b8fc5ea8d349a54c398…...

大坝渗流监测设备——渗压计
渗压计是一种用于监测大坝等水工建筑物渗流压力的重要设备,其准确性和可靠性对于保障大坝安全运行至关重要。南京峟思将为大家详细介绍渗压计的工作原理、安装方法及其在大坝渗流监测中的应用。 渗压计主要利用振弦频率的变化来测量渗透水压力。设备由透水部件、感应…...

Pikachu-Sql Inject-宽字节注入
基本概念 宽字节是相对于ascII这样单字节而言的;像 GB2312、GBK、GB18030、BIG5、Shift_JIS 等这些都是常说的宽字节,实际上只有两字节 GBK 是一种多字符的编码,通常来说,一个 gbk 编码汉字,占用2个字节。一个…...

如何制作低代码开发的视频教程?
如何制作低代码开发的视频教程? 随着数字化转型的加速,越来越多的企业和组织开始采用低代码开发平台来加速应用程序的构建。对于许多开发者和业务人员来说,学习如何使用这些平台可以显著提高工作效率。因此,创建一份清晰、实用且…...
Flink学习地址
--基础概念 概览 | Apache Flink --应用系列 如何学习Flink:糙快猛的大数据之路(图文并茂)_flink 学习-CSDN博客 --Python系列 pyflink实时接收kafka数据至hive_pyflink下kafka数据经过处理后插入hive-CSDN博客 Pyflink教程(一)&#…...
05_23 种设计模式之《建造者模式》
文章目录 一、建造者模式基础知识建造者模式的结构建造者模式的应用场景 一、建造者模式基础知识 建造者模式(Builder Pattern)是一种创建型设计模式,它提供了一种优雅的方式来创建复杂对象,同时隐藏其构建过程。这种模式允许你通…...

详细分析Spring Security OAuth2中的JwtAccessTokenConverter基本知识(附Demo)
目录 前言1. 基本知识2. Demo3. 实战 前言 java框架 零基础从入门到精通的学习路线 附开源项目面经等(超全)【Java项目】实战CRUD的功能整理(持续更新) 1. 基本知识 JwtAccessTokenConverter 是 Spring Security OAuth2 中的一…...

python习题2
1、输出一个年份,判断其是不是闰年 #输入一个年份,判断其是否是闰年 y eval(input()) if y%4 0 and y%100 ! 0:print("是") elif y%4000:print("是") else:print("不是") 2、模拟智能客服: 按1查询账户余额…...

CVSS 4.0 学习笔记
通用漏洞评分系统(CVSS)捕获了主要技术软件、硬件和固件漏洞的特征。其输出包括数字分数,表明与其他漏洞。 以下因素可能包括但不限于:监管要求、客户数量受影响、因违约造成的金钱损失、生命或财产受到威胁,或潜在漏洞的声誉影响。这些因素在CVSS评估范围之外。 CVSS的好…...
解决 GPTQ 模型导入后推理生成 Tokens 速度很慢的问题(从源码重新安装 Auto-GPTQ)
这里解决的是使用 Auto-GPTQ 或者 Transformers 导入 GPTQ 模型后推理速度很慢的问题。 值得注意的是,这个问题很有可能是因为安装不正确,所以 GPTQ 无法正确使用 GPU 进行推理,也就是说无法进行加速,即便 print(model.device) 显…...

NDC美国药品编码目录数据库查询方法
NDC(National Drug Code)翻译为“国家药品代码”,是美国食品药品监督管理局(FDA)制定的一种药品标识系统,用于唯一标识药品。这个编码系统主要目的是为精准识别和追踪不同药品而建设,行业人员和…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...
React---day11
14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store: 我们在使用异步的时候理应是要使用中间件的,但是configureStore 已经自动集成了 redux-thunk,注意action里面要返回函数 import { configureS…...
音视频——I2S 协议详解
I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...

Linux 中如何提取压缩文件 ?
Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...

Windows安装Miniconda
一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...
Docker拉取MySQL后数据库连接失败的解决方案
在使用Docker部署MySQL时,拉取并启动容器后,有时可能会遇到数据库连接失败的问题。这种问题可能由多种原因导致,包括配置错误、网络设置问题、权限问题等。本文将分析可能的原因,并提供解决方案。 一、确认MySQL容器的运行状态 …...

消防一体化安全管控平台:构建消防“一张图”和APP统一管理
在城市的某个角落,一场突如其来的火灾打破了平静。熊熊烈火迅速蔓延,滚滚浓烟弥漫开来,周围群众的生命财产安全受到严重威胁。就在这千钧一发之际,消防救援队伍迅速行动,而豪越科技消防一体化安全管控平台构建的消防“…...

企业大模型服务合规指南:深度解析备案与登记制度
伴随AI技术的爆炸式发展,尤其是大模型(LLM)在各行各业的深度应用和整合,企业利用AI技术提升效率、创新服务的步伐不断加快。无论是像DeepSeek这样的前沿技术提供者,还是积极拥抱AI转型的传统企业,在面向公众…...
Monorepo架构: Nx Cloud 扩展能力与缓存加速
借助 Nx Cloud 实现项目协同与加速构建 1 ) 缓存工作原理分析 在了解了本地缓存和远程缓存之后,我们来探究缓存是如何工作的。以计算文件的哈希串为例,若后续运行任务时文件哈希串未变,系统会直接使用对应的输出和制品文件。 2 …...

聚六亚甲基单胍盐酸盐市场深度解析:现状、挑战与机遇
根据 QYResearch 发布的市场报告显示,全球市场规模预计在 2031 年达到 9848 万美元,2025 - 2031 年期间年复合增长率(CAGR)为 3.7%。在竞争格局上,市场集中度较高,2024 年全球前十强厂商占据约 74.0% 的市场…...