卷积的计算——nn.Conv2d(Torch.nn里的Convolution Layers模块里的Conv2d类)
**前置知识:
1、张量和通道
张量:多维数组,用来表示数据(图像、视频等)
通道:图像数据的一部分,表示不同的颜色或特征层
通道只是张量的其中一个维度
以一张RGB图像为例,
该图像数据可以用一个三维张量(shape等于(C,H,W))来表示
其中C表示通道数(对于RGB图像,C=3),H表示高度,W表示宽度
再以一批64张图像组成的数据对象来看,
它可以用一个四维张量(shape等于(N,C,H,W))来表示
其中N表示批次大小(一批次图像的数量)
关于通道的补充:

2、Reshape:输入数据和卷积核张量的重塑
input = torch.reshape(input, (1, 1, 5, 5))
- 1:第一个
1表示有 1 张图片(批量大小) - 1:第二个
1表示输入的通道数(这里是单通道,表示灰度图像) - 5 和 5:分别表示图像的高度和宽度
kernel = torch.reshape(kernel, (1, 1, 3, 3))
- 1:第一个
1表示有 1 个卷积核(输出通道数) - 1:第二个
1表示卷积核的输入通道数(与input的输入通道数匹配) - 3 和 3:分别表示卷积核的高度和宽度
通过重塑,增加的信息主要是关于批量大小和通道数,
这使得输入和卷积核符合 conv2d 函数的要求
(输入张量必须是四维的,形状为 (N, C, H, W),
卷积核(权重)必须是四维的,形状为 (out_channels, in_channels, kernel_height, kernel_width):)
补充:
一张2*2RGB图像与一个3*3卷积核的卷积:
reshape后:
input的形状是(1,3,2,2),1表示1张图片
卷积核的形状是(1,3,3,3),1表示1个输出通道
3、output=F.conv2d(input,kernel,stride=1,padding=1)
| input | 输入张量(4维) |
| kernel | 卷积核(4维) |
| stride | 卷积核移动的步幅(可以是一个整数或元组,默认为 1) |
| padding | 在输入的边缘添加零填充(帮助保持输出的空间尺寸) |

**代码:
步骤:
import torch.nn.functional as F
定义input、kernel——>修改成四维形状reshape——>使用conv2d进行卷积
灰度图像的卷积:帮助识别图像中的特定特征,如边缘或纹理
import torch
import torch.nn.functional as Finput=torch.tensor([[1,2,0,3,1],[0,1,2,3,1],[1,2,1,0,0],[5,2,3,1,1],[2,1,0,1,1]
])#卷积核
kernel=torch.tensor([[1,2,1],[0,1,0],[2,1,0]
])print(input.shape)
print(kernel.shape)input=torch.reshape(input,(1,1,5,5)) #图片数,图层数(通道数),宽,高
kernel=torch.reshape(kernel,(1,1,3,3))print(input.shape)
print(kernel.shape)output1=F.conv2d(input,kernel,stride=1)
print(output1)output2=F.conv2d(input,kernel,stride=2)
print(output2)output3=F.conv2d(input,kernel,stride=1,padding=1)
print(output3)
相关文章:
卷积的计算——nn.Conv2d(Torch.nn里的Convolution Layers模块里的Conv2d类)
**前置知识: 1、张量和通道 张量:多维数组,用来表示数据(图像、视频等) 通道:图像数据的一部分,表示不同的颜色或特征层 通道只是张量的其中一个维度 以一张RGB图像为例, 该图像…...
确保接口安全:六大方案有效解决幂等性问题
文章目录 六大方案解决接口幂等问题什么是接口幂等?天然幂等不做幂等会怎么样? 解决方案1)insert前先select2)使用唯一索引3)去重表加悲观锁4)加乐观锁之版本号机制5)使用 Redisson 分布式锁6&a…...
代码随想录算法训练营第二十九天| 93. 复原 IP 地址,78. 子集, 90. 子集 II
93. 复原 IP 地址,78. 子集, 90. 子集 II 93. 复原 IP 地址78. 子集90. 子集 II 93. 复原 IP 地址 有效 IP 地址 正好由四个整数(每个整数位于 0 0 0 到 255 255 255之间组成,且不能含有前导 0 0 0),整…...
【WebGis开发 - Cesium】三维可视化项目教程---初始化场景
系列文章目录 【WebGis开发 - Cesium】三维可视化项目教程—图层管理基础【WebGis开发 - Cesium】三维可视化项目教程—视点管理 目录 系列文章目录引言一、Cesium引入项目1.1 下载资源1.2 项目引入Cesium 二、初始化地球2.1 创建基础文件2.1.1 创建Cesium工具方法文件2.1.2 创…...
点云中ICP算法的详解
ICP(Iterative Closest Point)算法是一种用于刚性点云配准的经典算法。其核心思想是通过迭代地寻找两个点云之间的最近点对,并计算最优的刚性变换(包括旋转和平移),使得源点云在目标点云的坐标系下对齐。IC…...
抽象类Abstart Class
抽象类其实就是一种不完全的设计图 必须用abstract修饰 模板方法:建议使用final修饰,不能被重写。...
Redis:通用命令 数据类型
Redis:通用命令 & 数据类型 通用命令SETGETKEYSEXISTSDELEXPIRETTLTYPEFLUSHALL 数据类型 Redis的客户端提供了很多命令用于操控Redis,在Redis中,key的类型都是字符串,而value有多种类型,每种类型都有自己的操作命…...
【Python高级编程】探索Python库:创建引人入胜的交互界面
1.制作交互界面常用到的库 在 Python 中,有多个库可以用于创建交互界面(GUI)。 以下是一些常用的 Python GUI 库: Tkinter: Python 的标准 GUI 库,通常随 Python 一起安装。简单易用,适合快速开发小型应用…...
OpenCV Canny()函数
OpenCV Canny()函数被用来检测图像物体的边缘。其算法原理如下: 高斯滤波:使用高斯滤波器平滑图像以减少噪声。高斯滤波器是一种线性滤波器,可以消除图像中的高频噪声,同时保留边缘信息。计算梯度强度和方向:使用Sobe…...
Java基础(3)
基本数据类型 Java 中的几种基本数据类型了解么? Java 中有 8 种基本数据类型,分别为: 6 种数字类型: 4 种整数型:byte、short、int、long2 种浮点型:float、double1 种字符类型:char1 种布尔…...
【C语言】VS调试技巧
文章目录 什么是bug什么是调试(debug)debug和releaseVS调试快捷键监视和内存观察编程常见错误归类 什么是bug bug本意是“昆虫”或“虫子”,现在一般是指在电脑系统或程序中,隐藏着的一些未被发现的缺陷或问题,简称程…...
【华为HCIP实战课程七】OSPF邻居关系排错MTU问题,网络工程师
一、MTU MUT默认1500,最大传输单元,一致性检测 [R3-GigabitEthernet0/0/1]mtu 1503//更改R3的MTU为1503 查看R3和SW1之间的OSPF邻居关系正常: 默认华为设备没有开启MTU一致性检测! [R3-GigabitEthernet0/0/1]ospf mtu-enable //手动开启MTU检测 [SW1-Vlanif30]ospf mtu…...
速盾:休闲类游戏如何选择高防cdn?
休闲类游戏的流行度日益增长,越来越多的玩家在业余时间里选择放松自己,享受游戏带来的乐趣。然而,在休闲类游戏中,网络延迟和游戏载入速度的问题常常会影响到玩家的游戏体验。为了解决这些问题,选择一个高防CDN&#x…...
电脑插上U盘不显示怎么回事?怎么解决?
平时使用电脑的时候经常会使用U盘来传输数据或是备份文件,有时候会遇到一个令头疼的问题,比如,将U盘插入电脑的USB口后,设备却显示不出来。电脑上插入U盘后却不显示会影响我们的正常工作。接下来,我们一起分析一下故障…...
Python 如何使用 SQLAlchemy 进行复杂查询
Python 如何使用 SQLAlchemy 进行复杂查询 一、引言 SQLAlchemy 是 Python 生态系统中非常流行的数据库处理库,它提供了一种高效、简洁的方式与数据库进行交互。SQLAlchemy 是一个功能强大的数据库工具,支持结构化查询语言(SQL)…...
nginx主配置文件
Nginx的主配置文件nginx.conf,一般定义了Nginx的基本设置和全局配置。下面是对这个配置文件的详细解释: 文件结构 #user nobody; worker_processes 1;#error_log logs/error.log; #error_log logs/error.log notice; #error_log logs/error.log …...
使用数据库:
数据库: 1.为何需要数据库? 存储数据方法 第一种:用大脑记住数据, 第二种:写纸上, 第三种:写在计算机的内存中, 第四种:写出磁盘文件 2.数据库能做什么࿱…...
python list, tuple dict,set的区别 以及**kwargs 的基本用法
在python中, list, tuple, dict, set有什么区别, 主要应用在什么样的场景? 定义: list:链表,有序的项目, 通过索引进行查找,使用方括号”[]”; tuple:元组,元组将多样的对象集合到一起,不能修改,通过索引进行查找, 使用括号”()”; dict:字典,字典是一组键(key)和值(value…...
实用生活英语口语学习成人零基础入门柯桥专业外语培训
“秋裤”的英语表达 首先,秋裤肯定不是autumn pants,chill cool就更离谱了! 最地道的美语说法一定会用到“thermal”这个单词: ▼ “thermal”的意思是“热的、保温的”,由此延伸出“秋裤、保暖内衣”的表达ÿ…...
FLINK SQL数据类型
Flink SQL支持非常完善的数据类型,以满足不同的数据处理需求。以下是对Flink SQL数据类型的详细归纳: 一、原子数据类型 字符串类型 CHAR、CHAR(n):定长字符串,n代表字符的定长,取值范围为[1, 2147483647]。如果不指…...
智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...
Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建
华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...
【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)
1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...
【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...
【分享】推荐一些办公小工具
1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由:大部分的转换软件需要收费,要么功能不齐全,而开会员又用不了几次浪费钱,借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...
GO协程(Goroutine)问题总结
在使用Go语言来编写代码时,遇到的一些问题总结一下 [参考文档]:https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现: 今天在看到这个教程的时候,在自己的电…...
【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...
关于uniapp展示PDF的解决方案
在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项: 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库: npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...
