卷积的计算——nn.Conv2d(Torch.nn里的Convolution Layers模块里的Conv2d类)
**前置知识:
1、张量和通道
张量:多维数组,用来表示数据(图像、视频等)
通道:图像数据的一部分,表示不同的颜色或特征层
通道只是张量的其中一个维度
以一张RGB图像为例,
该图像数据可以用一个三维张量(shape等于(C,H,W))来表示
其中C表示通道数(对于RGB图像,C=3),H表示高度,W表示宽度
再以一批64张图像组成的数据对象来看,
它可以用一个四维张量(shape等于(N,C,H,W))来表示
其中N表示批次大小(一批次图像的数量)
关于通道的补充:

2、Reshape:输入数据和卷积核张量的重塑
input = torch.reshape(input, (1, 1, 5, 5))
- 1:第一个
1表示有 1 张图片(批量大小) - 1:第二个
1表示输入的通道数(这里是单通道,表示灰度图像) - 5 和 5:分别表示图像的高度和宽度
kernel = torch.reshape(kernel, (1, 1, 3, 3))
- 1:第一个
1表示有 1 个卷积核(输出通道数) - 1:第二个
1表示卷积核的输入通道数(与input的输入通道数匹配) - 3 和 3:分别表示卷积核的高度和宽度
通过重塑,增加的信息主要是关于批量大小和通道数,
这使得输入和卷积核符合 conv2d 函数的要求
(输入张量必须是四维的,形状为 (N, C, H, W),
卷积核(权重)必须是四维的,形状为 (out_channels, in_channels, kernel_height, kernel_width):)
补充:
一张2*2RGB图像与一个3*3卷积核的卷积:
reshape后:
input的形状是(1,3,2,2),1表示1张图片
卷积核的形状是(1,3,3,3),1表示1个输出通道
3、output=F.conv2d(input,kernel,stride=1,padding=1)
| input | 输入张量(4维) |
| kernel | 卷积核(4维) |
| stride | 卷积核移动的步幅(可以是一个整数或元组,默认为 1) |
| padding | 在输入的边缘添加零填充(帮助保持输出的空间尺寸) |

**代码:
步骤:
import torch.nn.functional as F
定义input、kernel——>修改成四维形状reshape——>使用conv2d进行卷积
灰度图像的卷积:帮助识别图像中的特定特征,如边缘或纹理
import torch
import torch.nn.functional as Finput=torch.tensor([[1,2,0,3,1],[0,1,2,3,1],[1,2,1,0,0],[5,2,3,1,1],[2,1,0,1,1]
])#卷积核
kernel=torch.tensor([[1,2,1],[0,1,0],[2,1,0]
])print(input.shape)
print(kernel.shape)input=torch.reshape(input,(1,1,5,5)) #图片数,图层数(通道数),宽,高
kernel=torch.reshape(kernel,(1,1,3,3))print(input.shape)
print(kernel.shape)output1=F.conv2d(input,kernel,stride=1)
print(output1)output2=F.conv2d(input,kernel,stride=2)
print(output2)output3=F.conv2d(input,kernel,stride=1,padding=1)
print(output3)
相关文章:
卷积的计算——nn.Conv2d(Torch.nn里的Convolution Layers模块里的Conv2d类)
**前置知识: 1、张量和通道 张量:多维数组,用来表示数据(图像、视频等) 通道:图像数据的一部分,表示不同的颜色或特征层 通道只是张量的其中一个维度 以一张RGB图像为例, 该图像…...
确保接口安全:六大方案有效解决幂等性问题
文章目录 六大方案解决接口幂等问题什么是接口幂等?天然幂等不做幂等会怎么样? 解决方案1)insert前先select2)使用唯一索引3)去重表加悲观锁4)加乐观锁之版本号机制5)使用 Redisson 分布式锁6&a…...
代码随想录算法训练营第二十九天| 93. 复原 IP 地址,78. 子集, 90. 子集 II
93. 复原 IP 地址,78. 子集, 90. 子集 II 93. 复原 IP 地址78. 子集90. 子集 II 93. 复原 IP 地址 有效 IP 地址 正好由四个整数(每个整数位于 0 0 0 到 255 255 255之间组成,且不能含有前导 0 0 0),整…...
【WebGis开发 - Cesium】三维可视化项目教程---初始化场景
系列文章目录 【WebGis开发 - Cesium】三维可视化项目教程—图层管理基础【WebGis开发 - Cesium】三维可视化项目教程—视点管理 目录 系列文章目录引言一、Cesium引入项目1.1 下载资源1.2 项目引入Cesium 二、初始化地球2.1 创建基础文件2.1.1 创建Cesium工具方法文件2.1.2 创…...
点云中ICP算法的详解
ICP(Iterative Closest Point)算法是一种用于刚性点云配准的经典算法。其核心思想是通过迭代地寻找两个点云之间的最近点对,并计算最优的刚性变换(包括旋转和平移),使得源点云在目标点云的坐标系下对齐。IC…...
抽象类Abstart Class
抽象类其实就是一种不完全的设计图 必须用abstract修饰 模板方法:建议使用final修饰,不能被重写。...
Redis:通用命令 数据类型
Redis:通用命令 & 数据类型 通用命令SETGETKEYSEXISTSDELEXPIRETTLTYPEFLUSHALL 数据类型 Redis的客户端提供了很多命令用于操控Redis,在Redis中,key的类型都是字符串,而value有多种类型,每种类型都有自己的操作命…...
【Python高级编程】探索Python库:创建引人入胜的交互界面
1.制作交互界面常用到的库 在 Python 中,有多个库可以用于创建交互界面(GUI)。 以下是一些常用的 Python GUI 库: Tkinter: Python 的标准 GUI 库,通常随 Python 一起安装。简单易用,适合快速开发小型应用…...
OpenCV Canny()函数
OpenCV Canny()函数被用来检测图像物体的边缘。其算法原理如下: 高斯滤波:使用高斯滤波器平滑图像以减少噪声。高斯滤波器是一种线性滤波器,可以消除图像中的高频噪声,同时保留边缘信息。计算梯度强度和方向:使用Sobe…...
Java基础(3)
基本数据类型 Java 中的几种基本数据类型了解么? Java 中有 8 种基本数据类型,分别为: 6 种数字类型: 4 种整数型:byte、short、int、long2 种浮点型:float、double1 种字符类型:char1 种布尔…...
【C语言】VS调试技巧
文章目录 什么是bug什么是调试(debug)debug和releaseVS调试快捷键监视和内存观察编程常见错误归类 什么是bug bug本意是“昆虫”或“虫子”,现在一般是指在电脑系统或程序中,隐藏着的一些未被发现的缺陷或问题,简称程…...
【华为HCIP实战课程七】OSPF邻居关系排错MTU问题,网络工程师
一、MTU MUT默认1500,最大传输单元,一致性检测 [R3-GigabitEthernet0/0/1]mtu 1503//更改R3的MTU为1503 查看R3和SW1之间的OSPF邻居关系正常: 默认华为设备没有开启MTU一致性检测! [R3-GigabitEthernet0/0/1]ospf mtu-enable //手动开启MTU检测 [SW1-Vlanif30]ospf mtu…...
速盾:休闲类游戏如何选择高防cdn?
休闲类游戏的流行度日益增长,越来越多的玩家在业余时间里选择放松自己,享受游戏带来的乐趣。然而,在休闲类游戏中,网络延迟和游戏载入速度的问题常常会影响到玩家的游戏体验。为了解决这些问题,选择一个高防CDN&#x…...
电脑插上U盘不显示怎么回事?怎么解决?
平时使用电脑的时候经常会使用U盘来传输数据或是备份文件,有时候会遇到一个令头疼的问题,比如,将U盘插入电脑的USB口后,设备却显示不出来。电脑上插入U盘后却不显示会影响我们的正常工作。接下来,我们一起分析一下故障…...
Python 如何使用 SQLAlchemy 进行复杂查询
Python 如何使用 SQLAlchemy 进行复杂查询 一、引言 SQLAlchemy 是 Python 生态系统中非常流行的数据库处理库,它提供了一种高效、简洁的方式与数据库进行交互。SQLAlchemy 是一个功能强大的数据库工具,支持结构化查询语言(SQL)…...
nginx主配置文件
Nginx的主配置文件nginx.conf,一般定义了Nginx的基本设置和全局配置。下面是对这个配置文件的详细解释: 文件结构 #user nobody; worker_processes 1;#error_log logs/error.log; #error_log logs/error.log notice; #error_log logs/error.log …...
使用数据库:
数据库: 1.为何需要数据库? 存储数据方法 第一种:用大脑记住数据, 第二种:写纸上, 第三种:写在计算机的内存中, 第四种:写出磁盘文件 2.数据库能做什么࿱…...
python list, tuple dict,set的区别 以及**kwargs 的基本用法
在python中, list, tuple, dict, set有什么区别, 主要应用在什么样的场景? 定义: list:链表,有序的项目, 通过索引进行查找,使用方括号”[]”; tuple:元组,元组将多样的对象集合到一起,不能修改,通过索引进行查找, 使用括号”()”; dict:字典,字典是一组键(key)和值(value…...
实用生活英语口语学习成人零基础入门柯桥专业外语培训
“秋裤”的英语表达 首先,秋裤肯定不是autumn pants,chill cool就更离谱了! 最地道的美语说法一定会用到“thermal”这个单词: ▼ “thermal”的意思是“热的、保温的”,由此延伸出“秋裤、保暖内衣”的表达ÿ…...
FLINK SQL数据类型
Flink SQL支持非常完善的数据类型,以满足不同的数据处理需求。以下是对Flink SQL数据类型的详细归纳: 一、原子数据类型 字符串类型 CHAR、CHAR(n):定长字符串,n代表字符的定长,取值范围为[1, 2147483647]。如果不指…...
汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...
微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...
令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
Matlab | matlab常用命令总结
常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...
Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要: 近期,在使用较新版本的OpenSSH客户端连接老旧SSH服务器时,会遇到 "no matching key exchange method found", "n…...
GitFlow 工作模式(详解)
今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
【JVM面试篇】高频八股汇总——类加载和类加载器
目录 1. 讲一下类加载过程? 2. Java创建对象的过程? 3. 对象的生命周期? 4. 类加载器有哪些? 5. 双亲委派模型的作用(好处)? 6. 讲一下类的加载和双亲委派原则? 7. 双亲委派模…...
