当前位置: 首页 > news >正文

TensorFlow与Pytorch的转换——1简单线性回归

import numpy as np# 生成随机数据
# 生成随机数据
x_train = np.random.rand(100000).astype(np.float32)
y_train = 0.5 * x_train + 2 import tensorflow as tf# 定义模型
W = tf.Variable(tf.random.normal([1]))
b = tf.Variable(tf.zeros([1]))
y = W * x_train + b
# 定义损失函数
loss = tf.reduce_mean(tf.square(y - y_train))
# 定义优化器
optimizer = tf.optimizers.SGD(0.5)
# 训练模型
for i in range(100):with tf.GradientTape() as tape:y = W * x_train + bloss = tf.reduce_mean(tf.square(y - y_train))gradients = tape.gradient(loss, [W, b])optimizer.apply_gradients(zip(gradients, [W, b]))if (i+1) % 50 == 0:print("Epoch [{}/{}], loss: {:.3f}, W: {:.3f}, b: {:.3f}".format(i+1, 1000, loss.numpy(), W.numpy()[0], b.numpy()[0]))# 预测新数据
x_test = np.array([0.1, 0.2, 0.3], dtype=np.float32)
y_pred = W * x_test + b
print("Predictions:", y_pred.numpy())
import matplotlib.pyplot as plt# 绘制结果
plt.scatter(x_train, y_train)
plt.plot(x_train, W * x_train + b, c='r')
plt.show()

Pytorch

import torch
import numpy as np
import matplotlib.pyplot as plt# 生成随机数据
x_train = torch.from_numpy(np.random.rand(100000).astype(np.float32))
y_train = 0.5 * x_train + 2# 定义模型参数
W = torch.randn(1, requires_grad=True)
b = torch.zeros(1, requires_grad=True)# 定义损失函数
loss_fn = torch.nn.MSELoss()# 定义优化器
optimizer = torch.optim.SGD([W, b], lr=0.5)# 训练模型
for i in range(100):y = W * x_train + bloss = loss_fn(y, y_train)optimizer.zero_grad()loss.backward()optimizer.step()if (i + 1) % 50 == 0:print(f"Epoch [{i + 1}/{100}], loss: {loss.item():.3f}, W: {W.item():.3f}, b: {b.item():.3f}")# 预测新数据
x_test = torch.tensor([0.1, 0.2, 0.3], dtype=torch.float32)
y_pred = W * x_test + b
print("Predictions:", y_pred.detach().numpy())# 绘制结果
plt.scatter(x_train.numpy(), y_train.numpy())
plt.plot(x_train.numpy(), (W * x_train + b).detach().numpy(), c='r')
plt.show()

相关文章:

TensorFlow与Pytorch的转换——1简单线性回归

import numpy as np# 生成随机数据 # 生成随机数据 x_train np.random.rand(100000).astype(np.float32) y_train 0.5 * x_train 2 import tensorflow as tf# 定义模型 W tf.Variable(tf.random.normal([1])) b tf.Variable(tf.zeros([1])) y W * x_train b # 定义损失函…...

短剧小程序短剧APP在线追剧APP网剧推广分销微短剧小剧场小程序集师知识付费集师短剧小程序集师小剧场小程序集师在线追剧小程序源码

一、产品简介功能介绍 集师专属搭建您的独有短剧/追剧/小剧场小程序或APP平台 二、短剧软件私域运营解决方案 针对短剧类小程序的运营,以下提出10条具体的方案: 明确定位与目标用户: 对短剧类小程序进行明确定位,了解目标用户群体…...

AI与物理学的交汇:Hinton与Hopfield获诺贝尔物理学奖

诺贝尔物理学奖颁给了AI!机器学习先驱Hinton与Hopfield联手获奖,出乎所有人的意料。 今年的诺贝尔物理学奖颁给了机器学习领域的两位先驱,杰弗里辛顿(Geoffrey Hinton)和约翰霍普菲尔德(John Hopfield&…...

六西格玛设计DFSS方法论在消费级无人机设计中的应用——张驰咨询

本文基于六西格玛设计方法论,对消费级无人机的设计流程进行系统化研究,探讨如何通过六西格玛设计的理念、工具和方法提升无人机产品的设计质量和市场竞争力。文章从市场定位、客户需求分析出发,深入到关键KPI指标的制定,并逐步阐述…...

按分类调用标签 调用指定分类下的TAG

按分类调用标签 调用指定分类下的TAG <?php query_posts(category_namenews); if (have_posts()) : while (have_posts()) : the_post(); if( get_the_tag_list() ){ echo $posttags get_the_tag_list(<li class"jquery">,</li><li>,</li…...

报错 - llama-index pydantic error | arbitrary_types_allowed | PydanticUserError

国庆节前使用 LiteLLMEmbedding 设置 llama-index Settings.embed_model 还好好的&#xff0c;回来后&#xff0c;就就报错&#xff0c;试着降级 llama-index 也无用&#xff1b;设置 Settings.llm 也是好好地。 解决方法&#xff1a;conda 重新创建环境后&#xff0c;在安装 …...

PostgreSQL Docker Error – 5432: 地址已被占用

PostgreSQL Docker Error – 5432: 地址已被占用 今天在学习【Spring Boot React】价值79.9美元&#xff0c;全栈开发&#xff0c;搭建个人网站、做毕业设计、试试这套课程第17~21节视频的时候&#xff0c;发现运行docker run --name demo-postgres -e POSTGRES_PASSWORDpass…...

【LeetCode】动态规划—646. 最长数对链(附完整Python/C++代码)

动态规划—646. 最长数对链 前言题目描述基本思路1. 问题定义2. 理解问题和递推关系3. 解决方法3.1 动态规划方法3.2 贪心方法 4. 进一步优化5. 小总结 代码实现PythonPython3代码实现Python 代码解释 CC代码实现C 代码解释 总结 前言 在这个问题中&#xff0c;我们需要找到可…...

数字媒体产业园区:创新资源集聚,助力企业成长

在当今数字化浪潮汹涌的时代&#xff0c;数字媒体产业园区作为创意与技术的交汇点&#xff0c;正以其独特的魅力和无限的潜力&#xff0c;成为助力企业成长的重要平台。其中&#xff0c;“数字媒体产业园区”以其创新资源的集聚效应&#xff0c;为入驻企业提供了广阔的发展空间…...

【Linux】来查看当前系统的架构

使用 uname 命令 uname -m 使用 arch 命令 arch 查看 /proc/cpuinfo 文件 查找 model name 或 Processor 字段。 cat /proc/cpuinfo 使用 lscpu 命令 lscpu...

QT中的信号槽

1.解释说明 1- qt中一般是使用信号槽来绑定对应的事件 2- 可以在初始化中调用connect来调用 3- 这里分别用头文件、源文件、界面文件去写示例 2.头文件.h #ifndef MAINWINDOW_H #define MAINWINDOW_H#include <QMainWindow>QT_BEGIN_NAMESPACE namespace Ui { class Mai…...

域名怎么转让给别人?

域名怎么转让给别人?许多企业和个人在发展过程中可能会选择转让域名&#xff0c;无论是因为业务重组、品牌更换&#xff0c;还是为了实现经济利益。那么&#xff0c;如何将域名顺利转让给他人呢?本文将详细介绍域名转让的步骤和注意事项。 一、了解域名转让的基本概念 域名…...

计算机网络思维导图

计算机网络 网络层 概述 主要任务 实现网路互连&#xff0c;进而实现数据包在各网络之间的传输 解决问题 向运输层提供可靠传输/不可靠传输的服务网络层寻址问题路由选择问题 英特网时使用最多的互联网&#xff0c;使用TCP/IP协议栈 网络层使用网际协议IP&#xff0c;时整个…...

07.useDefault

在 React 应用开发中,处理状态的默认值和空值情况是一个常见需求。useDefault 钩子提供了一种优雅的方式来管理状态,同时为空值(null 或 undefined)提供默认回退值。这个自定义钩子不仅简化了状态管理,还提高了代码的可读性和健壮性。以下是如何实现和使用这个自定义钩子:…...

git更加详细和灵活的提交过程,附带如何配置. gitignore来忽略部分文件的提交。

本套流程可以控制提交的代码是哪些&#xff0c;比直接使用git add . 更灵活&#xff0c;比如在项目中&#xff0c;一些文件不能通过.gitignore进行尽职提交&#xff0c;那么就需要使用本方法来手动控制是否提交&#xff0c;缺点就是相对麻烦一些。 git status//查看从当前工作…...

使用正则表达式删除文本的奇数行或者偶数行

用智谱清言和kimi搜出来的结果都没法在notepad生效&#xff0c;后面在overflow上找到的答案比较靠谱。 查找&#xff1a;^[^\n]*\n([^\n]*) 替换&#xff1a;\1 删除偶数行 查找&#xff1a;^([^\n]*)\n[^\n]* 替换&#xff1a;\1 代码解释 ^&#xff1a;这个符号代表字符…...

YOLOv10改进策略【注意力机制篇】| CVPR2024 CAA上下文锚点注意力机制

一、本文介绍 本文记录的是基于CAA注意力模块的YOLOv10目标检测改进方法研究。在远程遥感图像或其他大尺度变化的图像中目标检测任务中,为准确提取其长距离上下文信息,需要解决大目标尺度变化和多样上下文信息时的不足的问题。CAA能够有效捕捉长距离依赖,并且参数量和计算量…...

Unity修改鼠标图片【超简单】

1.向Unity导入需要修改的鼠标图片&#xff0c;在Unity内设置图片的Texture Type为Cursor。 2.编写代码 [SerializeField] Texture2D mouseTex;//放图片 void Start() {Cursor.SetCursor(mouseTex, Vector2.zero, CursorMode.Auto); }3.代码挂载在某物体&#xff08;或者随便哪…...

windows C++-创建数据流代理(三)

以下示例展示了 log_agent 类&#xff0c;它类似于 dataflow_agent 类。 log_agent 类实现异步记录代理&#xff0c;用于将日志消息写入文件和控制台。 log_agent 类使应用程序能够将消息分类为信息性、警告或错误消息。 它还使应用程序能够指定每个日志类别是写入文件、控制台…...

C语言学习-循环嵌套打印字母金字塔

前言 最近博主也是在努力的学习C语言&#xff0c;在学习的过程当中碰到了一个对我来说的“难题”&#xff0c;足足控了我有半小时&#xff0c;不过这个问题也是挺有趣的&#xff0c;我也就借着本道题目来写一篇文章和大家交流交流 准备工作 vs2022(其他编辑器当然也可以)c语…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

Robots.txt 文件

什么是robots.txt&#xff1f; robots.txt 是一个位于网站根目录下的文本文件&#xff08;如&#xff1a;https://example.com/robots.txt&#xff09;&#xff0c;它用于指导网络爬虫&#xff08;如搜索引擎的蜘蛛程序&#xff09;如何抓取该网站的内容。这个文件遵循 Robots…...

LLM基础1_语言模型如何处理文本

基于GitHub项目&#xff1a;https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken&#xff1a;OpenAI开发的专业"分词器" torch&#xff1a;Facebook开发的强力计算引擎&#xff0c;相当于超级计算器 理解词嵌入&#xff1a;给词语画"…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...

[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】

大家好&#xff0c;我是java1234_小锋老师&#xff0c;看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】&#xff0c;分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...

如何更改默认 Crontab 编辑器 ?

在 Linux 领域中&#xff0c;crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用&#xff0c;用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益&#xff0c;允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...