当前位置: 首页 > news >正文

【LeetCode】动态规划—712. 两个字符串的最小ASCII删除和(附完整Python/C++代码)

动态规划—712. 两个字符串的最小ASCII删除和

  • 前言
  • 题目描述
  • 基本思路
    • 1. 问题定义
    • 2. 理解问题和递推关系
    • 3. 解决方法
      • 3.1 动态规划方法
      • 3.2 空间优化的动态规划
    • 4. 进一步优化
    • 5. 小总结
  • 代码实现
    • Python
      • Python3代码实现
      • Python 代码解释
    • C++
      • C++代码实现
      • C++ 代码解释
  • 总结:

前言

在字符串处理的过程中,如何有效地将两个字符串转换为相同的形式是一个重要的问题。最小 ASCII 删除和问题提供了一种评估字符串相似性的有效方法,通过计算所需删除字符的 ASCII 值和,为我们提供了清晰的转换成本。本文将探讨这一问题的基本思路,并给出动态规划的实现方法,最后展示 Python 和 C++ 的具体代码。

题目描述

在这里插入图片描述

基本思路

1. 问题定义

最小 ASCII 删除和问题要求我们找出将两个字符串 s 1 s 1 s1 s 2 s 2 s2 转换为相同字符串所需删除的字符的最小 ASCII 值之和。换句话说,计算出为了使两个字符串相同,所需删除的字符的 ASCII 值的总和。

2. 理解问题和递推关系

  • 对于两个字符串 s 1 s 1 s1 s 2 s 2 s2 ,我们可以定义 dp[i][j] 为将 s 1 s 1 s1 的前 i i i 个字符和 s 2 s 2 s2 的前 j个字符变为相同的最小 ASCII 删除和。
  • 递推关系如下:
    • 如果 s 1 [ i − 1 ] = = s 2 [ j − 1 ] s 1[i-1]==s 2[j-1] s1[i1]==s2[j1] ,那么不需要删除任何字符, d p [ i ] [ j ] = d p [ i − 1 ] [ j − 1 ] d p[i][j]=d p[i-1][j-1] dp[i][j]=dp[i1][j1]
    • 如果 s 1 [ i − 1 ] ! = s 2 [ j − 1 ] s 1[i-1]!=s 2[j-1] s1[i1]!=s2[j1], 则有三种情况:
      • 删除 s 1 [ i − 1 ] s1[i-1] s1[i1],代价为 ord ⁡ ( s 1 [ i − 1 ] ) + d p [ i − 1 ] [ j ] \operatorname{ord}(s 1[i-1])+d p[i-1][j] ord(s1[i1])+dp[i1][j]
      • 删除 s 2 [ j − 1 ] s 2[j-1] s2[j1] ,代价为 ord ⁡ ( s 2 [ j − 1 ] ) + d p [ i ] [ j − 1 ] \operatorname{ord}(s 2[j-1])+d p[i][j-1] ord(s2[j1])+dp[i][j1]
      • 同时删除 s 1 [ i − 1 ] s 1[i-1] s1[i1] s 2 [ j − 1 ] s 2[j-1] s2[j1] ,代价为 ord ⁡ ( s 1 [ i − 1 ] ) + ord ⁡ ( s 2 [ j − 1 ] ) + dp ⁡ [ i − 1 ] [ j − \operatorname{ord}(s 1[i-1])+\operatorname{ord}(s 2[j-1])+\operatorname{dp}[i-1][j- ord(s1[i1])+ord(s2[j1])+dp[i1][j 1].
    • 因此,综合以上情况:

d p [ i ] [ j ] = min ⁡ ( d p [ i − 1 ] [ j ] + ord ⁡ ( s 1 [ i − 1 ] ) , d p [ i ] [ j − 1 ] + ord ⁡ ( s 2 [ j − 1 ] ) , d p [ i − 1 ] [ j − 1 ] + ord ⁡ ( s 1 [ i − 1 ] ) + ord ⁡ ( s 2 [ j − 1 ] ) ) d p[i][j]=\min (d p[i-1][j]+\operatorname{ord}(s 1[i-1]), d p[i][j-1]+\operatorname{ord}(s 2[j-1]), d p[i-1][j-1]+\operatorname{ord}(s 1[i-1])+\operatorname{ord}(s 2[j-1])) dp[i][j]=min(dp[i1][j]+ord(s1[i1]),dp[i][j1]+ord(s2[j1]),dp[i1][j1]+ord(s1[i1])+ord(s2[j1]))

3. 解决方法

3.1 动态规划方法

  1. 创建一个二维数组 d p d p dp ,大小为 ( m + 1 ) × ( n + 1 ) (m+1) \times(n+1) (m+1)×(n+1) ,其中 m m m n n n 分别是 s 1 s 1 s1 s 2 s 2 s2 的长度。
  2. 初始化边界条件:
    • d p [ i ] [ 0 ] = ∑ k = 0 i − 1 ord ( s 1 [ k ] ) dp[i][0]=\sum_{k=0}^{i-1} \text{ord}(s1[k]) dp[i][0]=k=0i1ord(s1[k]),表示将 s 1 s 1 s1 的前 i i i 个字符转换为空字符串所需删除的 ASCII 值之和。
    • d p [ 0 ] [ j ] = ∑ k = 0 j − 1 ord ( s 2 [ k ] ) dp[0][j]=\sum_{k=0}^{j-1} \text{ord}(s2[k]) dp[0][j]=k=0j1ord(s2[k]),表示将 s 2 s 2 s2 的前 j j j 个字符转换为空字符串所需删除的 ASCII 值之和。
  3. 使用双重石环填充 dp 数组,依赖于前面的状态。
  4. 最终结果为 d p [ m ] [ n ] \mathrm{dp}[\mathrm{m}][\mathrm{n}] dp[m][n]

3.2 空间优化的动态规划

  • 可以使用一维数组来优化空间复杂度,减少内存占用。

4. 进一步优化

通过空间优化,降低内存占用的同时保持时间复杂度为 O ( m ∗ n ) O(m * n) O(mn),适合中等规模的字符串比较。

5. 小总结

  • 最小 ASCII 删除和问题通过动态规划有效地解决了两个字符串之间的转换成本。
  • 该问题的解法展示了如何设计状态转移方程,并且可以通过空间优化提高性能。
  • 理解该问题不仅有助于掌握动态规划的应用,还为处理相似问题提供了思路。

以上就是两个字符串的最小ASCII删除和问题的基本思路。

代码实现

Python

Python3代码实现

class Solution:def minimumDeleteSum(self, s1: str, s2: str) -> int:m, n = len(s1), len(s2)# 创建dp数组dp = [[0] * (n + 1) for _ in range(m + 1)]# 初始化边界条件for i in range(1, m + 1):dp[i][0] = dp[i - 1][0] + ord(s1[i - 1])  # 删除s1的字符for j in range(1, n + 1):dp[0][j] = dp[0][j - 1] + ord(s2[j - 1])  # 删除s2的字符# 填充dp数组for i in range(1, m + 1):for j in range(1, n + 1):if s1[i - 1] == s2[j - 1]:dp[i][j] = dp[i - 1][j - 1]  # 字符相同else:dp[i][j] = min(dp[i - 1][j] + ord(s1[i - 1]),    # 删除s1的字符dp[i][j - 1] + ord(s2[j - 1]),    # 删除s2的字符dp[i - 1][j - 1] + ord(s1[i - 1]) + ord(s2[j - 1]))  # 同时删除# 返回最小ASCII删除和return dp[m][n]

Python 代码解释

  • 初始化:创建 dp 数组并设置边界条件,分别表示将 s1s2 转换为空字符串的操作。
  • 填充 dp 数组:使用双重循环计算每个子问题的最小 ASCII 删除和,依赖于之前的结果。
  • 返回结果:最终返回 dp[m][n],即将 s1 转换为 s2 所需的最小 ASCII 删除和。

C++

C++代码实现

class Solution {
public:int minimumDeleteSum(string s1, string s2) {int m = s1.size(), n = s2.size();// 创建dp数组vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));// 初始化边界条件for (int i = 1; i <= m; i++) {dp[i][0] = dp[i - 1][0] + s1[i - 1];  // 删除s1的字符}for (int j = 1; j <= n; j++) {dp[0][j] = dp[0][j - 1] + s2[j - 1];  // 删除s2的字符}// 填充dp数组for (int i = 1; i <= m; i++) {for (int j = 1; j <= n; j++) {if (s1[i - 1] == s2[j - 1]) {dp[i][j] = dp[i - 1][j - 1];  // 字符相同} else {dp[i][j] = min({dp[i - 1][j] + s1[i - 1],    // 删除s1的字符dp[i][j - 1] + s2[j - 1],    // 删除s2的字符dp[i - 1][j - 1] + s1[i - 1] + s2[j - 1]});  // 同时删除}}}// 返回最小ASCII删除和return dp[m][n];}
};

C++ 代码解释

  • 初始化:创建 dp 数组并设置边界条件,分别表示将 s1s2 转换为空字符串的操作。
  • 动态规划填充:使用双重循环遍历每个可能的子问题,依据字符是否相同来更新 dp 数组。
  • 返回结果:返回 dp[m][n],即将 s1 转换为 s2 所需的最小 ASCII 删除和。

总结:

  • 最小 ASCII 删除和问题通过动态规划有效地解决了字符串之间的转换成本,具有广泛的实际应用。
  • 理解并掌握该问题的解法,不仅对学习动态规划有帮助,还为处理其他类似问题提供了思路。

相关文章:

【LeetCode】动态规划—712. 两个字符串的最小ASCII删除和(附完整Python/C++代码)

动态规划—712. 两个字符串的最小ASCII删除和 前言题目描述基本思路1. 问题定义2. 理解问题和递推关系3. 解决方法3.1 动态规划方法3.2 空间优化的动态规划 4. 进一步优化5. 小总结 代码实现PythonPython3代码实现Python 代码解释 CC代码实现C 代码解释 总结: 前言 在字符串处…...

wordpress Contact Form 7插件提交留言时发生错误可能的原因

WordPress Contact Form 7 插件提交留言时发生错误可能有以下几种原因&#xff0c;并提供相应的解决方案&#xff1a; 1. 表单字段验证失败 原因&#xff1a; 用户输入的数据未通过表单字段的验证规则。 解决方案&#xff1a; – 检查表单字段的验证规则是否设置正确。 –…...

uibot发送邮件:自动化邮件发送教程详解!

uibot发送邮件的操作指南&#xff1f;uibot发送邮件的两种方式&#xff1f; 在现代办公环境中&#xff0c;自动化流程的引入极大地提高了工作效率。uibot发送邮件功能成为了许多企业和个人实现邮件自动化发送的首选工具。AokSend将详细介绍如何使用uibot发送邮件。 uibot发送…...

【PostgreSQL】PG数据库表“膨胀”粗浅学习

文章目录 1 为什么需要关注表膨胀&#xff1f;2 如何确定是否发生了表膨胀&#xff1f;2.1 通过查询表的死亡元组占比情况来判断膨胀率2.1.1 指定数据库和表名2.1.2 查询数据库里面所有表的膨胀情况 3 膨胀的原理3.1 什么是膨胀&#xff1f;膨胀率&#xff1f;3.2 哪些数据库元…...

力扣(leetcode)每日一题 871 最低加油次数 | 贪心

871. 最低加油次数 题干 汽车从起点出发驶向目的地&#xff0c;该目的地位于出发位置东面 target 英里处。 沿途有加油站&#xff0c;用数组 stations 表示。其中 stations[i] [positioni, fueli] 表示第 i 个加油站位于出发位置东面 positioni 英里处&#xff0c;并且有 f…...

ppt压缩文件怎么压缩?压缩PPT文件的多种压缩方法

ppt压缩文件怎么压缩&#xff1f;当文件体积过大时&#xff0c;分享和传输就会变得困难。许多电子邮件服务对附件的大小有限制&#xff0c;而在网络环境不佳时&#xff0c;上传和下载大文件可能耗时较长。此外&#xff0c;在不同设备上播放时&#xff0c;较大的PPT文件还可能导…...

2024.10月11日--- SpringMVC拦截器

拦截器 1 回顾过滤器&#xff1a; Servlet规范中的三大接口&#xff1a;Servlet接口&#xff0c;Filter接口、Listener接口。 过滤器接口&#xff0c;是Servlet2.3版本以来&#xff0c;定义的一种小型的&#xff0c;可插拔的Web组件&#xff0c;可以用来拦截和处理Servlet容…...

uniapp 锁屏显示插件 Ba-LockShow(可让vue直接具备锁屏显示能力)

简介 Ba-LockShow 是一款可以直接使uniapp的vue界面在锁屏页展示的插件。 支持使vue直接具备锁屏显示能力支持设置锁屏显示和不显示支持唤醒屏幕 截图展示&#xff08;仅参考&#xff09; 支持定制、本地包、源码等&#xff0c;有建议和需要&#xff0c;请点击文章结尾“Unia…...

CSS计数器

CSS 中的计数器类似于变量&#xff0c;可以实现简单的计数功能&#xff0c;并将结果显示在页面上&#xff0c;在早期的网站上应用比较广泛。要实现计数器需要用到以下几个属性&#xff1a; counter-reset&#xff1a;创建或者重置计数器&#xff1b;counter-increment&#xf…...

嵌入式Linux:信号集

目录 1、信号集初始化 2、向信号集中添加或删除信号 3、测试信号是否在信号集中 在 Linux 系统中&#xff0c;处理多个信号时常用到一种数据结构&#xff1a;信号集&#xff08;sigset_t&#xff09;。信号集允许我们将多个信号组织在一起&#xff0c;以便在系统调用中传递和…...

Linux 外设驱动 应用 1 IO口输出

从这里开始外设驱动介绍&#xff0c;这里使用的IMX8的芯片作为驱动介绍 开发流程&#xff1a; 修改设备树&#xff0c;配置 GPIO1_IO07 为 GPIO 输出。使用 sysfs 接口或编写驱动程序控制 GPIO 引脚。编译并测试。 这里假设设备树&#xff0c;已经配置好了。不在论述这个问题…...

基于SpringBoot+Vue+MySQL的留守儿童爱心网站

系统展示 用户前台界面 管理员后台界面 系统背景 随着现代社会的发展&#xff0c;留守儿童问题日益受到关注。传统的纸质管理方式已经无法满足现代人们对留守儿童爱心信息的需求。为了提高留守儿童爱心信息的管理效率&#xff0c;增加用户信息的安全性&#xff0c;并方便及时反…...

调用第三方接口

目录 一、分析给出的接口文档 二、请求体格式之间的区别 三、示例代码 一、分析给出的接口文档 一般的接口文档包括以下几大部分&#xff1a; 1、请求URL&#xff1a;http://{ip}:{port}/api/ec/dev/message/sendCustomMessageSingle 2、请求方式&#xff1a;POST、GET等 3、…...

JAVA 多线程入门例子:CountDownLatch

首先确定线程数量。如果数据集合的大小小于50&#xff0c;就只使用一个线程&#xff1b;否则使用5个线程。计算每个线程平均处理的数据数量sizePerThread以及余数remainder。在划分数据子集合时&#xff0c;对于每个线程的处理范围进行计算。如果有余数&#xff0c;就将余数依次…...

k8s jenkins 动态创建slave

k8s jenkins 动态创建slave 简述使用jenkins动态slave的优势&#xff1a;配置jenkins动态slave配置 Pod Template配置容器模板挂载卷 测试 简述 持续构建与发布是我们日常工作中必不可少的一个步骤&#xff0c;目前大多公司都采用 Jenkins 集群来搭建符合需求的 CI/CD 流程&am…...

MVS海康工业相机达不到标称最大帧率

文章目录 一、相机参数设置1、取消相机帧率限制2、修改相机图像格式3、调整相机曝光时间4、检查相机数据包大小&#xff08;网口相机特有参数&#xff09;5、 恢复相机默认参数6、 相机 ADC 输出位深调整 二、系统环境设置1、 网口相机设置2、 USB 相机设置 一、相机参数设置 …...

数据结构:用双栈实现一个队列

要用两个栈实现一个队列&#xff0c;可以利用“栈”的后进先出 (LIFO) 特性来模拟“队列”的先进先出 (FIFO) 操作。具体做法是使用两个栈&#xff1a;一个作为入栈栈&#xff0c;另一个作为出栈栈。 算法步骤 入队操作&#xff08;enqueue&#xff09;&#xff1a; 将元素压…...

QScroller Class

Header:#include < QScroller > qmake:QT += widgets Since:Qt 5.0 Inherits:QObject This class was introduced in Qt 5.0. Public Types enum Input {InputPress, InputMove, InputRelease } enum ScrollerGestureType {TouchGesture, LeftMouseButtonGesture,…...

React高阶组件详解

React高阶组件&#xff08;HOC&#xff09;详解 定义 React高阶组件&#xff08;HOC&#xff09;是一个函数&#xff0c;该函数接受一个组件作为参数并返回一个新的组件。高阶组件本身不是一个组件&#xff0c;而是一个函数&#xff0c;它利用React的组合特性&#xff0c;对传入…...

TextView把其它控件挤出屏幕的处理办法

1.如果TextView后面的控件是紧挨着TextView的&#xff0c;可以给TextView添加maxWidth限制其最大长度 上有问题的布局代码 <?xml version"1.0" encoding"utf-8"?> <layout xmlns:android"http://schemas.android.com/apk/res/android&qu…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

MFC内存泄露

1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中&#xff0c;各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过&#xff0c;在涉及到多个子类派生于基类进行多态模拟的场景下&#xff0c;…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec&#xff1f; IPsec VPN 5.1 IPsec传输模式&#xff08;Transport Mode&#xff09; 5.2 IPsec隧道模式&#xff08;Tunne…...