当前位置: 首页 > news >正文

Java->排序

目录

一、排序

1.概念

2.常见的排序算法

二、常见排序算法的实现 

1.插入排序

1.1直接插入排序

1.2希尔排序(缩小增量法)

1.3直接插入排序和希尔排序的耗时比较 

2.选择排序

2.1直接选择排序

2.2堆排序

2.3直接选择排序与堆排序的耗时比较

3.交换排序

3.1冒泡排序

3.2快速排序

1. Hoare版

2. 挖坑法

3. 前后指针

3.2.1快速排序的优化

1.三数取中法选key

2. 递归到小的子区间时,可以考虑使用插入排序

3.2.2非递归的快速排序

4.归并排序

1.归并排序 

2.非递归的归并排序 

3.海量数据的排序问题

5.排序算法复杂度及稳定性分析

​编辑

三、其他非基于比较排序

1.计数排序

2.基数排序

3.桶排序

4.比较

5.排序

一、排序

1.概念

所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。

稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。

 内部排序:数据元素全部放在内存中的排序

外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求在内外存之间移动数据的排序

2.常见的排序算法

二、常见排序算法的实现 

1.插入排序

把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为止,得到一个新的有序序列

1.1直接插入排序

    public static void insertSort(int[] array) {for (int i = 1; i < array.length; i++) {int j = i - 1;int tmp = array[i];for (; j >= 0; j--) {if(array[j] > tmp) {
//if(arr[j] >= tmp)
//变为不稳定的排序array[j+1] = array[j];}else {
//                    array[j+1] = tmp;break;}}array[j+1] = tmp;}}

直接插入排序的特性总结:
1. 元素集合越接近有序,直接插入排序算法的时间效率越高
2. 时间复杂度:O(N^2)
3. 空间复杂度:O(1),它是一种稳定的排序算法
4. 稳定性:稳定

如果一个排序     本身就是稳定的排序        那么它就可以被实现为不稳定的排序,

但是一个排序     本身就是不稳定的排序    那么它不可能被实现为稳定的排序

1.2希尔排序(缩小增量法)

先选定一个整数,把待排序文件分为整数个组,再进行每个组内的排序

跳跃式分组: 

    public static void shellSort(int[] array) {int gap = array.length;while(gap > 1) {gap /= 2;shell(array,gap);}}private static void shell(int[] array, int gap) {for (int i = gap; i < array.length; i++) {int j = i - gap;int tmp = array[i];for (; j >= 0; j -= gap) {if(array[j] > tmp) {array[j+gap] = array[j];}else {break;}}array[j+gap] = tmp;}}

 希尔排序的特性总结:
1. 希尔排序是对直接插入排序的优化。
2. 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。
3. 希尔排序的时间复杂度不固定:O(N^1.3)....O(N^1.5)
4. 空间复杂度:O(1)  ,不稳定

1.3直接插入排序和希尔排序的耗时比较 

import java.util.Arrays;
import java.util.Random;public class Text {public static void readyDataOrder(int[] array) {Random random = new Random();for (int i = 0; i < array.length; i++) {array[i] = random.nextInt(100000);}}public static void InsertOrder(int[] array) {array = Arrays.copyOf(array,array.length);long start = System.currentTimeMillis();Sort.insertSort(array);long end = System.currentTimeMillis();System.out.println("插入排序耗时参考:" + (end - start));}public static void ShellOrder(int[] array) {long start = System.currentTimeMillis();Sort.shellSort(array);long end = System.currentTimeMillis();System.out.println("希尔排序耗时参考:" + (end - start));}public static void main(String[] args) {int[] array = new int[100000];readyDataOrder(array);InsertOrder(array);ShellOrder(array);}
}
//插入排序耗时参考:1884
//希尔排序耗时参考:22

2.选择排序

每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完

2.1直接选择排序

    public static void selectSort(int[] array) {for (int i = 0; i < array.length; i++) {int minIndex = i;for (int j = i + 1; j < array.length; j++) {if (array[j] < array[minIndex]) {minIndex = j;}}swap(array,i,minIndex);}}private static void swap(int[] array, int i, int minIndex) {int tmp = array[i];array[i] = array[minIndex];array[minIndex] = tmp;}

直接选择排序的特性总结:
1. 直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用
2. 时间复杂度:O(N^2)
3. 空间复杂度:O(1)
4. 稳定性:不稳定

private static void swap(int[] array, int i, int j) {int tmp = array[i];array[i] = array[j];array[j] = tmp;}public static void select2Sort(int[] array) {int left = 0;int right = array.length - 1;while(left<right) {int minIndex = left;int maxIndex = left;for (int i = left + 1; i <= right; i++) {if(array[i] < array[minIndex]) {minIndex = i;}if(array[i] > array[maxIndex]) {maxIndex = i;}}swap(array,left,minIndex);//第一个数据是最大值if(maxIndex == left) {maxIndex = minIndex;}swap(array,right,maxIndex);left++;right--;}}
//复杂度不变

2.2堆排序

堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆

    public static void heapSort(int[] array) {createHeap(array);int end = array.length - 1;while(end > 0) {swap(array,0,end);siftDown(array,0,end);end--;}}private static void swap(int[] array, int i, int j) {int tmp = array[i];array[i] = array[j];array[j] = tmp;}public static void createHeap(int[] array) {for (int parent = (array.length - 1 - 1) / 2; parent >= 0; parent--) {siftDown(array,parent,array.length);}}private static void siftDown(int[] array,int parent,int len) {int child = parent * 2 + 1;while(child < len) {if(child + 1 < len && array[child] < array[child + 1]) {child++;}if(array[child] > array[parent]) {swap(array,child,parent);parent = child;child = parent * 2 + 1;}else {break;}}}

堆排序的特性总结:
1. 堆排序使用堆来选数,效率就高了很多。
2. 时间复杂度:O(N*logN)
3. 空间复杂度:O(1)
4. 稳定性:不稳定

2.3直接选择排序与堆排序的耗时比较

public class Text {public static void main(String[] args) {int[] array = new int[100000];readyDataOrder(array);InsertOrder(array);ShellOrder(array);selectOrder(array);select2Order(array);heaptOrder(array);}public static void readyDataOrder(int[] array) {Random random = new Random();for (int i = 0; i < array.length; i++) {array[i] = random.nextInt(100000);}}public static void InsertOrder(int[] array) {array = Arrays.copyOf(array,array.length);long start = System.currentTimeMillis();Sort.insertSort(array);long end = System.currentTimeMillis();System.out.println("插入排序耗时参考:" + (end - start));}public static void ShellOrder(int[] array) {array = Arrays.copyOf(array,array.length);long start = System.currentTimeMillis();Sort.shellSort(array);long end = System.currentTimeMillis();System.out.println("希尔排序耗时参考:" + (end - start));}public static void selectOrder(int[] array) {array = Arrays.copyOf(array,array.length);long start = System.currentTimeMillis();Sort.selectSort(array);long end = System.currentTimeMillis();System.out.println("选择排序耗时参考:" + (end - start));}public static void select2Order(int[] array) {array = Arrays.copyOf(array,array.length);long start = System.currentTimeMillis();Sort.select2Sort(array);long end = System.currentTimeMillis();System.out.println("选择排序2耗时参考:" + (end - start));}public static void heaptOrder(int[] array) {array = Arrays.copyOf(array,array.length);long start = System.currentTimeMillis();Sort.heapSort(array);long end = System.currentTimeMillis();System.out.println("堆排序耗时参考:" + (end - start));}
}
//插入排序耗时参考:2098
//希尔排序耗时参考:25
//选择排序耗时参考:4093
//选择排序2耗时参考:2929
//堆排序耗时参考:16

3.交换排序

所谓交换,就是根据序列中两个记录键值的比较结果来对换这两个记录在序列中的位置,交换排序的特点是:将键值较大的记录向序列的尾部移动,键值较小的记录向序列的前部移动。

3.1冒泡排序

    public static void bubbleSort(int[] array) {//i是趟数for (int i = 0; i < array.length - 1; i++) {for (int j = 0; j < array.length - 1 - i; j++) {if(array[j] > array[j+1]) {swap(array,j,j+1);}}}}private static void swap(int[] array, int i, int j) {int tmp = array[i];array[i] = array[j];array[j] = tmp;}

冒泡排序的特性总结:
1. 冒泡排序是一种非常容易理解的排序
2. 时间复杂度:O(N^2)
3. 空间复杂度:O(1)
4. 稳定性:稳定

优化:

    public static void bubbleSort(int[] array) {//i是趟数for (int i = 0; i < array.length - 1; i++) {boolean flg = true;for (int j = 0; j < array.length - 1 - i; j++) {if(array[j] > array[j+1]) {swap(array,j,j+1);flg = false;}}if(flg) {break;}}}private static void swap(int[] array, int i, int j) {int tmp = array[i];array[i] = array[j];array[j] = tmp;}

3.2快速排序

任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止

1. Hoare版
    public static void quickSort(int[] array) {quick(array,0,array.length - 1);}private static void quick(int[] array, int left, int right) {if(left > right) return;int par = partition(array,left,right);quick(array,left,par-1);quick(array,par+1,right);}private static int partition(int[] array, int start, int end) {int i = start;int pivot = array[start];while(start < end) {
//先end后startwhile(start < end && array[end] >= pivot) {end--;}while(start < end && array[start] <= pivot) {start++;}swap(array,start,end);}swap(array,i,start);return start;}private static void swap(int[] array, int i, int j) {int tmp = array[i];array[i] = array[j];array[j] = tmp;}

快速排序的特性总结:
1. 快速排序整体的综合性能和使用场景都是比较好的,所以才敢叫快速排序
2. 时间复杂度:O(N*logN)     如果的是1 2 3 4 5 或 5 4 3 2 1…… 单分支的树时间复杂度为O(N^2),但一般不说快排时间复杂度为O(N^2),
3. 空间复杂度:O(logN)   单分支的树空间复杂度为O(N)
4. 稳定性:不稳定

 
//插入排序耗时参考:1983
//希尔排序耗时参考:19
//选择排序耗时参考:3844
//选择排序2耗时参考:2977
//堆排序耗时参考:14
//冒泡排序耗时参考:20525
//快速排序耗时参考:11
2. 挖坑法
    public static void quickSort(int[] array) {quick(array,0,array.length - 1);}private static void quick(int[] array, int left, int right) {if(left > right) return;int par = partition(array,left,right);quick(array,left,par-1);quick(array,par+1,right);}  private static int partition(int[] array,int start,int end) {int pivot = array[start];while(start < end) {while(start < end && array[end] >= pivot) {end--;}array[start] = array[end];while(start < end && array[start] <= pivot) {start++;}array[end] = array[start];}array[start] = pivot;return start;}
3. 前后指针
    public static void quickSort(int[] array) {quick(array,0,array.length - 1);}private static void quick(int[] array, int left, int right) {if(left > right) return;int par = partition(array,left,right);quick(array,left,par-1);quick(array,par+1,right);}private static int partition(int[] array,int start,int end) {int prev = start;int cur = start + 1;while(cur <= end) {if(array[cur] < array[start] && array[++prev] != array[cur]) {swap(array,cur,prev);}cur++;}swap(array,prev,start);return prev;}private static void swap(int[] array, int i, int j) {int tmp = array[i];array[i] = array[j];array[j] = tmp;}
3.2.1快速排序的优化
1.三数取中法选key
    private static void quick(int[] array, int left, int right) {if(left > right) return;int index = midThreeNum(array,left,right);swap(array,index,left);int par = partition(array,left,right);quick(array,left,par-1);quick(array,par+1,right);}//三数取中法选keypublic static int midThreeNum(int[] array, int start, int end) {int mid = (start + end) / 2;if(array[start] < array[end]) {if(array[mid] < array[start]){return start;}else if(array[mid] > array[end]) {return end;}else {return mid;}}else {if(array[mid] > array[start]){return start;}else if(array[mid] < array[end]) {return end;}else {return mid;}}}
2. 递归到小的子区间时,可以考虑使用插入排序
    public static void quickSort(int[] array) {quick(array,0,array.length - 1);}private static void quick(int[] array, int left, int right) {if(left > right) return;if(right - left + 1 == 7) {insertSort2(array,left,right);}int index = midThreeNum(array,left,right);swap(array,index,left);int par = partition(array,left,right);quick(array,left,par-1);quick(array,par+1,right);}//三数取中法选keypublic static int midThreeNum(int[] array, int start, int end) {int mid = (start + end) / 2;if(array[start] < array[end]) {if(array[mid] < array[start]){return start;}else if(array[mid] > array[end]) {return end;}else {return mid;}}else {if(array[mid] > array[start]){return start;}else if(array[mid] < array[end]) {return end;}else {return mid;}}}//递归到小的子区间时,可以考虑使用插入排序private static void insertSort2(int[] array ,int start,int end) {for (int i = start + 1; i <= end; i++) {int j = i - 1;int tmp = array[i];for (; j >= start; j--) {if (array[j] > tmp) {array[j + 1] = array[j];} else {
//                    array[j+1] = tmp;break;}}array[j + 1] = tmp;}}private static int partition(int[] array, int start, int end) {int i = start;int pivot = array[start];while(start < end) {while(start < end && array[end] >= pivot) {end--;}while(start < end && array[start] <= pivot) {start++;}swap(array,start,end);}swap(array,i,start);return start;}
3.2.2非递归的快速排序
    public static void quickSort2(int[] array) {int left = 0;int right = array.length - 1;int par = partition(array,left,right);Stack<Integer> stack = new Stack<>();if(par > left + 1) {stack.push(left);stack.push(par - 1);}if(par < right - 1) {stack.push(par + 1);stack.push(right);}while(!stack.isEmpty()) {right = stack.pop();left = stack.pop();par = partition(array,left,right);if(par > left + 1) {stack.push(left);stack.push(par - 1);}if(par < right - 1) {stack.push(par + 1);stack.push(right);}}}private static int partition(int[] array, int start, int end) {int i = start;int pivot = array[start];while(start < end) {while(start < end && array[end] >= pivot) {end--;}while(start < end && array[start] <= pivot) {start++;}swap(array,start,end);}swap(array,i,start);return start;}

4.归并排序

归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide andConquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并

1.归并排序 

    public static void mergeSort(int[] array) {mergeSortFunc(array,0,array.length - 1);}private static void mergeSortFunc(int[] array,int left,int right) {if(left == right) return;int mid =(left + right) / 2;//分解mergeSortFunc(array,left,mid);mergeSortFunc(array,mid+1,right);//合并merge(array,left,right,mid);}private static void merge(int[] array, int left, int right, int mid) {int s1 = left;int e1 = mid;int s2 = mid + 1;int e2 = right;int[] tmpArr = new int[right - left + 1];int k = 0;while(s1<=e1 && s2<=e2) {if(array[s1] < array[s2]) {tmpArr[k++] = array[s1++];}else {tmpArr[k++] = array[s2++];}}while(s1<=e1) {tmpArr[k++] = array[s1++];}while(s2<=e2) {tmpArr[k++] = array[s2++];}for (int i = 0; i < tmpArr.length; i++) {array[i+left] = tmpArr[i];}}

归并排序的特性总结:
1. 归并的缺点在于需要O(N)的空间复杂度,归并排序的思考更多的是解决在磁盘中的外排序问题。
2. 时间复杂度:O(N*logN)
3. 空间复杂度:O(N)
4. 稳定性:稳定

//插入排序耗时参考:2301
//希尔排序耗时参考:25
//选择排序耗时参考:4710
//选择排序2耗时参考:3635
//堆排序耗时参考:25
//冒泡排序耗时参考:23906
//快速排序耗时参考:40
//归并排序耗时参考:42

2.非递归的归并排序 

public static void mergeSort(int[] array) {int gap = 1;while (gap < array.length) {for (int i = 0; i < array.length; i += 2*gap) {int left = i;int mid = left + gap - 1;int right = mid + gap;if (mid >= array.length) {mid = array.length - 1;}if (right >= array.length) {right = array.length - 1;}merge(array, left, right, mid);}gap *= 2;}}private static void merge(int[] array, int left, int right, int mid) {int s1 = left;int e1 = mid;int s2 = mid + 1;int e2 = right;int[] tmpArr = new int[right - left + 1];int k = 0;while (s1 <= e1 && s2 <= e2) {if (array[s1] < array[s2]) {tmpArr[k++] = array[s1++];} else {tmpArr[k++] = array[s2++];}}while (s1 <= e1) {tmpArr[k++] = array[s1++];}while (s2 <= e2) {tmpArr[k++] = array[s2++];}for (int i = 0; i < tmpArr.length; i++) {array[i + left] = tmpArr[i];}}

3.海量数据的排序问题

外部排序:排序过程需要在磁盘等外部存储进行的排序
前提:内存只有 1G,需要排序的数据有 100G
因为内存中因为无法把所有数据全部放下,所以需要外部排序,而归并排序是最常用的外部排序
1. 先把文件切分成 200 份,每个 512 M
2. 分别对 512 M 排序,因为内存已经可以放的下,所以任意排序方式都可以
3. 进行 2路归并,同时对 200 份有序文件做归并过程,最终结果就有序了

5.排序算法复杂度及稳定性分析

排序方法最好平均最坏空间复杂度稳定性
冒泡排序O(n)O(n^2)O(n^2)O(1)稳定
插入排序O(n)O(n^2)O(n^2)O(1)稳定
选择排序O(n^2)O(n^2)O(n^2)O(1)不稳定
希尔排序O(n)O(n^1.3)O(n^2)O(1)不稳定
堆排序O(n * log(n))O(n * log(n))O(n * log(n))O(1)不稳定
快速排序O(n * log(n))O(n * log(n))O(n^2)O(log(n)) ~ O(n)不稳定
归并排序O(n * log(n))O(n * log(n))O(n * log(n))O(n)稳定

三、其他非基于比较排序

1.计数排序

计数排序的场景一定是数据集中在某各范围中

步骤:

1. 统计相同元素出现次数
2. 根据统计的结果将序列回收到原来的序列中

    public static void countSort(int[] array) {//1.求 最大值 最小值 来确定 计数数组的大小int min = array[0];int max = array[0];for (int i = 1; i < array.length; i++) {if(array[i] < min) {min = array[i];}if(array[i] > max) {max = array[i];}}int len = max - min + 1;int[] count = new int[len];//2.遍历原来的数组 存放元素到计数数组中
//O(N)for (int i = 0; i < array.length; i++) {int index = array[i] - min;count[index]++;}//3.遍历计数数组
//O(范围)int arrIndex = 0;for (int i = 0; i < count.length; i++) {while(count[i]!=0) {array[arrIndex] = i + min;arrIndex++;count[i]--;}}

时间复杂度:O(范围 + N )

空间复杂度:O(范围)

稳定性:稳定

2.基数排序

动态图

队列,桶

3.桶排序

划分多个范围相同的区间,每个子区间自排序,最后合并

    public static void bucketSort(int[] array){// 计算最大值与最小值int max = array[0];int min = array[0];for(int i = 1; i < array.length; i++){if(array[i] < min) {min = array[i];}if(array[i] > max) {max = array[i];}}// 计算桶的数量int bucketNum = (max - min) / array.length + 1;ArrayList<ArrayList<Integer>> bucketArr = new ArrayList<>(bucketNum);for(int i = 0; i < bucketNum; i++){bucketArr.add(new ArrayList<Integer>());}// 将每个元素放入桶for(int i = 0; i < array.length; i++){int num = (array[i] - min) / (array.length);bucketArr.get(num).add(array[i]);}// 对每个桶进行排序for(int i = 0; i < bucketArr.size(); i++){Collections.sort(bucketArr.get(i));}// 将桶中的元素赋值到原序列int index = 0;for(int i = 0; i < bucketArr.size(); i++){for(int j = 0; j < bucketArr.get(i).size(); j++){array[index++] = bucketArr.get(i).get(j);}}}

4.比较

  • 基数排序:根据键值的每位数字来分配桶;
  • 计数排序:每个桶只存储单一键值;
  • 桶排序:每个桶存储一定范围的数值;

5.排序

相关文章:

Java->排序

目录 一、排序 1.概念 2.常见的排序算法 二、常见排序算法的实现 1.插入排序 1.1直接插入排序 1.2希尔排序(缩小增量法) 1.3直接插入排序和希尔排序的耗时比较 2.选择排序 2.1直接选择排序 2.2堆排序 2.3直接选择排序与堆排序的耗时比较 3.交换排序 3.1冒泡排序…...

linux 大小写转换

var"TM_card_INFo" # 把变量中的第一个字符换成大写 echo ${var^} # 把变量中的所有小写字母&#xff0c;全部替换为大写 echo ${var^^} # 把变量中的第一个字符换成小写 echo ${var,} # 把变量中的所有大写字母&#xff0c;全部替换为小写 echo ${var,,} 参考…...

Linux——传输层协议

目录 一再谈端口号 1端口号范围划分 2两个问题 3理解进程与端口号的关系 二UDP协议 1格式 2特点 3进一步理解 3.1关于UDP报头 3.2关于报文 4基于UDP的应用层协议 三TCP协议 1格式 2TCP基本通信 2.1关于可靠性 2.2TCP通信模式 3超时重传 4连接管理 4.1建立…...

centos系列,yum部署jenkins2.479.1,2024年长期支持版本

centos系列&#xff0c;yum部署jenkins2.479.1&#xff0c;2024年长期支持版本 0、介绍 注意&#xff1a;jenkins建议安装LTS长期支持版本&#xff0c;而不是安装每周更新版本&#xff0c;jenkins安装指定版本 openjdk官网下载 Index of /jenkins/redhat-stable/ | 清华大学开…...

正则表达式-“三剑客”(grep、sed、awk)

1.3正则表达式 正则表达式描述了一种字符串匹配的模式&#xff0c;可以用来检查一个串是否含有某种子串&#xff0c;将匹配的子串替换或者从某个串中取出符号某个条件的子串等&#xff0c;在linux中代表自定义的模式模版&#xff0c;linux工具可以用正则表达式过滤文本。Linux…...

数智时代的新航向:The Open Group 2024生态系统架构·可持续发展年度大会邀您共筑AI数字新时代

在全球可持续发展和数字化转型双重驱动下&#xff0c;企业正面临着前所未有的挑战与机遇。如何在激烈的市场竞争中&#xff0c;实现业务增长的同时&#xff0c;履行社会责任&#xff0c;达成可持续发展的目标&#xff1f;The Open Group 2024生态系统架构可持续发展年度大会将于…...

TensorFlow 的核心概念

TensorFlow 是一个开源的机器学习框架&#xff0c;由 Google 开发和维护。它提供了一个强大的工具集&#xff0c;用于构建和训练各种机器学习模型。 TensorFlow 的核心概念是计算图&#xff08;Computational Graph&#xff09;。计算图由节点&#xff08;Nodes&#xff09;和…...

SpringBoot教程(二十四) | SpringBoot实现分布式定时任务之Quartz(动态新增、修改等操作)

SpringBoot教程&#xff08;二十四&#xff09; | SpringBoot实现分布式定时任务之Quartz&#xff08;动态新增、修改等操作&#xff09; 前言数据库脚本创建需要被调度的方法创建相关实体类创建业务层接口创建业务层实现类控制层类测试结果 前言 我这边的SpringBoot的版本为2…...

Matlab详细学习教程 MATLAB使用教程与知识点总结

Matlab语言教程 章节目录 一、Matlab简介与基础操作 二、变量与数据类型 三、矩阵与数组操作 四、基本数学运算与函数 五、图形绘制与数据可视化 六、控制流与逻辑运算 七、脚本与函数编写 八、数据导入与导出 九、Matlab应用实例分析 一、Matlab简介与基础操作 重点内容知识…...

【ELKB】Kibana使用

搭建好ELKB后访问地址&#xff1a;http://localhost:5601 输入账号密码登录以后 左侧导航有home、Analysis、Enterprise search 、Observability、Security、Management home&#xff1a;首页Analysis&#xff1a;工具来分析及可视化数据Enterprise search&#xff1a;企业级搜…...

ChatGPT免费使用:人工智能在现代社会中的作用

随着人工智能技术的不断发展&#xff0c;越来越多的应用程序和工具开始使用GPT作为其语言模型。但是&#xff0c;这些应用程序和工具是否收费&#xff1f;如果是免费的&#xff0c;那么他们是如何盈利的&#xff1f;在本文中&#xff0c;我们将探讨ChatGPT免费使用的背后原理&a…...

腾讯音乐:从 Elasticsearch 到 Apache Doris 内容库升级,统一搜索分析引擎,成本直降 80%

导读&#xff1a; 为满足更严苛数据分析的需求&#xff0c;腾讯音乐借助 Apache Doris 替代了 Elasticsearch 集群&#xff0c;统一了内容库数据平台的内容搜索和分析引擎。并基于 Doris 倒排索引和全文检索的能力&#xff0c;支持了复杂的自定义标签计算&#xff0c;实现秒级查…...

CubeMX的FreeRTOS学习

一、FreeRTOS的介绍 什么是FreeRTOS&#xff1f; Free即免费的&#xff0c;RTOS的全称是Real Time Operating system,中文就是实时操作系统。 注意&#xff1a;RTOS不是指某一个确定的系统&#xff0c;而是指一类的操作系统。比如&#xff1a;us/OS&#xff0c;FreeRTOS&…...

C语言初始:数据类型和变量

、 一.数据类型介绍 人有黄人白人黑人&#xff0c;那么数据呢&#xff1f; 我们大家可以看出谁是黄种人&#xff0c;谁是白种人&#xff0c;谁是黑种人&#xff0c;这是因为他们是类似的。 数据也是有类型的&#xff0c;就譬如整数类型&#xff0c;字符类型&#xff0c;浮点…...

Linux shellcheck工具

安装工具 通过linux yum源下载&#xff0c;可能因为yum源的问题找不到软件包&#xff0c;或者下载的软件包版本太旧。 ShellCheck的源代码托管在GitHub上(推荐下载方式)&#xff1a; GitHub - koalaman/shellcheck: ShellCheck, a static analysis tool for shell scripts 对下…...

FLINK SQL时间属性

Flink三种时间属性简介 在Flink SQL中&#xff0c;时间属性是一个核心概念&#xff0c;它主要用于处理与时间相关的数据流。Flink支持三种时间属性&#xff1a;事件时间&#xff08;event time&#xff09;、处理时间&#xff08;processing time&#xff09;和摄入时间&#…...

android——Groovy gralde 脚本迁移到DSL

1、implementation的转换 implementation com.github.CymChad:BaseRecyclerViewAdapterHelper:*** 转换为 implementation ("com.github.CymChad:BaseRecyclerViewAdapterHelper:***") 2、plugin的转换 apply plugin: kotlin-android-extensions 转换为&#x…...

工程项目管理中的最常见概念!蓝燕云总结!

01 怎么理解工程项目管理&#xff1f; 建设工程项目管理指的是专业性的管理&#xff0c;并非行政事务管理。建设工程项目管理是对工程项目全生命周期的管理&#xff0c;确保项目能够按计划的进度、成本和质量完成。 建设工程项目不同阶段管理的主要内容不同&#xff0c;通常…...

PostgreSQL AUTO INCREMENT

PostgreSQL AUTO INCREMENT 在数据库管理系统中&#xff0c;自动递增&#xff08;AUTO INCREMENT&#xff09;是一种常见特性&#xff0c;用于在插入新记录时自动生成唯一的标识符。PostgreSQL&#xff0c;作为一个功能强大的开源关系数据库管理系统&#xff0c;也提供了类似的…...

24-10-13-读书笔记(二十五)-《一只特立独行的猪》([中] 王小波)用一生来学习艺术

文章目录 《一只特立独行的猪》&#xff08;[中] 王小波&#xff09;目录阅读笔记记录总结 《一只特立独行的猪》&#xff08;[中] 王小波&#xff09; 十月第五篇&#xff0c;放慢脚步&#xff0c;秋季快要过去了&#xff0c;要步入冬季了&#xff0c;心中也是有些跌宕起伏&am…...

Java—继承性与多态性

目录 一、this关键字 1. 理解this 2. this练习 二、继承性 2.1 继承性的理解 2.1.1 多层继承 2.2 继承性的使用练习 2.2.1 练习1 2.2.2 练习2 2.3 方法的重写 2.4 super关键字 2.4.1 子类对象实例化 三、多态性 3.1 多态性的理解 3.2 向下转型与多态练习 四、Ob…...

打通华为认证实验考试“痛点”:备考指南全解析

华为认证体系中的实验考试环节&#xff0c;尤其是针对高端的HCIE认证&#xff0c;是评估考生实践技能的关键部分。这一环节的核心目标是检验考生对华为设备和解决方案的操作熟练度、技术实施技能以及面对现实工作挑战时的问题解决能力。通过在真实环境中进行的实践操作&#xf…...

【软考】子系统划分

目录 1. 子系统划分的原则1.1 子系统要具有相对独立性1.2 子系统之间数据的依赖性尽量小1.3 子系统划分的结果应使数据几余较小1.4 子系统的设置应考虑今后管理发展的需要1.5 子系统的划分应便于系统分阶段实现1.6 子系统的划分应考虑到各类资源的充分利用 2. 子系统结构设计3.…...

【Python】selenium获取鼠标在网页上的位置,并定位到网页位置模拟点击的方法

在使用Selenium写自动化爬虫时&#xff0c;遇到验证码是常事了。我在写爬取测试的时候&#xff0c;遇到了点击型的验证码&#xff0c;例如下图这种&#xff1a; 这种看似很简单&#xff0c;但是它居然卡爬虫&#xff1f;用简单的点触验证码的方法来做也没法实现 平常的点触的方…...

【C++ 真题】B2078 含 k 个 3 的数

含 k 个 3 的数 题目描述 输入两个正整数 m m m 和 k k k&#xff0c;其中 1 < m ≤ 1 0 15 1 \lt m \leq 10^{15} 1<m≤1015&#xff0c; 1 < k ≤ 15 1 \lt k \leq 15 1<k≤15 &#xff0c;判断 m m m 是否恰好含有 k k k 个 3 3 3&#xff0c;如果满足条…...

蓝桥杯省赛真题——冶炼金属

问题描述 小蓝有一个神奇的炉子用于将普通金属 O 冶炼成为一种特殊金属 X。这个炉子有一个称作转换率的属性 V&#xff0c;V 是一个正整数&#xff0c;这意味着消耗 V 个普通金属 O 恰好可以冶炼出一个特殊金属 X&#xff0c;当普通金属 O 的数目不足 V 时&#xff0c;无法继续…...

【Mac苹果电脑安装】DBeaverEE for Mac 数据库管理工具软件教程【保姆级教程】

Mac分享吧 文章目录 DBeaverEE 数据库管理工具 软件安装完成&#xff0c;打开效果图片Mac电脑 DBeaverEE 数据库管理工具 软件安装——v24.21️⃣&#xff1a;下载软件2️⃣&#xff1a;安装JDK&#xff0c;根据下图操作步骤提示完成安装3️⃣&#xff1a;安装DBeaverEE&#…...

数据仓库中的维度建模:深入理解与案例分析

数据仓库中的维度建模&#xff1a;深入理解与案例分析 维度建模是数据仓库设计中最常用的一种方法&#xff0c;旨在简化数据访问、提高查询效率&#xff0c;特别适用于需要对数据进行多维分析的场景。本文将深入探讨维度建模的核心概念、设计步骤以及如何将其应用于实际案例中…...

前端打印功能(vue +springboot)

后端 后端依赖生成pdf的方法pdf转图片使用(用的打印模版是带参数的 ,参数是aaa)总结 前端页面 效果 后端 依赖 依赖 一个是用模版生成对应的pdf,一个是用来将pdf转成图片需要的 <!--打印的--><dependency><groupId>net.sf.jasperreports</groupId>&l…...

中间件有哪些分类?

中间件的分类 中间件是位于操作系统和应用程序之间的软件&#xff0c;它提供了一系列服务来简化分布式系统中的应用程序开发和集成。中间件可以根据其功能和用途被分为不同的类别。以下是中间件的一些主要分类&#xff1a; 1. 通信处理&#xff08;消息&#xff09;中间件&am…...