当前位置: 首页 > news >正文

【力扣 | SQL题 | 每日四题】力扣534, 574, 2314, 2298

今天的每日四题比较简单,主要其中两题可以用窗口函数轻松解决。

1. 力扣534:游戏玩法分析3

1.1 题目:

表:Activity

+--------------+---------+
| Column Name  | Type    |
+--------------+---------+
| player_id    | int     |
| device_id    | int     |
| event_date   | date    |
| games_played | int     |
+--------------+---------+
(player_id,event_date)是此表的主键(具有唯一值的列)。
这张表显示了某些游戏的玩家的活动情况。
每一行是一个玩家的记录,他在某一天使用某个设备注销之前登录并玩了很多游戏(可能是 0 )。

编写一个解决方案,同时报告每组玩家和日期,以及玩家到 目前为止 玩了多少游戏。也就是说,玩家在该日期之前所玩的游戏总数。详细情况请查看示例。

以 任意顺序 返回结果表。

结果格式如下所示。

示例 1:

输入:
Activity table:
+-----------+-----------+------------+--------------+
| player_id | device_id | event_date | games_played |
+-----------+-----------+------------+--------------+
| 1         | 2         | 2016-03-01 | 5            |
| 1         | 2         | 2016-05-02 | 6            |
| 1         | 3         | 2017-06-25 | 1            |
| 3         | 1         | 2016-03-02 | 0            |
| 3         | 4         | 2018-07-03 | 5            |
+-----------+-----------+------------+--------------+
输出:
+-----------+------------+---------------------+
| player_id | event_date | games_played_so_far |
+-----------+------------+---------------------+
| 1         | 2016-03-01 | 5                   |
| 1         | 2016-05-02 | 11                  |
| 1         | 2017-06-25 | 12                  |
| 3         | 2016-03-02 | 0                   |
| 3         | 2018-07-03 | 5                   |
+-----------+------------+---------------------+
解释:
对于 ID 为 1 的玩家,2016-05-02 共玩了 5+6=11 个游戏,2017-06-25 共玩了 5+6+1=12 个游戏。
对于 ID 为 3 的玩家,2018-07-03 共玩了 0+5=5 个游戏。
请注意,对于每个玩家,我们只关心玩家的登录日期。

1.2 思路:

以player_id 分区,然后以event_date排序,在同一分区内,当窗口指针指向第一条记录的时候,会计算第一条记录的和;当指针指向第二条记录的时候,会计算前两条记录的和...

需要注意的是:窗口函数的over括号内是对记录的逻辑分区和排序哦。并不会实际改变原来的表的记录的顺序。所以题目不要求顺序。

1.3 题解 :

-- 窗口函数大法:
select player_id, event_date, sum(games_played) over (partition by player_id order by event_date) games_played_so_far
from Activity

2. 力扣574:当选者

2.1 题目:

表: Candidate

+-------------+----------+
| Column Name | Type     |
+-------------+----------+
| id          | int      |
| name        | varchar  |
+-------------+----------+
id 是该表中具有唯一值的列
该表的每一行都包含关于候选对象的id和名称的信息。

表: Vote

+-------------+------+
| Column Name | Type |
+-------------+------+
| id          | int  |
| candidateId | int  |
+-------------+------+
id 是自动递增的主键(具有唯一值的列)。
candidateId是id来自Candidate表的外键(reference 列)。
该表的每一行决定了在选举中获得第i张选票的候选人。

编写解决方案来报告获胜候选人的名字(即获得最多选票的候选人)。

生成的测试用例保证 只有一个候选人赢得 选举。

返回结果格式如下所示。

示例 1:

输入: 
Candidate table:
+----+------+
| id | name |
+----+------+
| 1  | A    |
| 2  | B    |
| 3  | C    |
| 4  | D    |
| 5  | E    |
+----+------+
Vote table:
+----+-------------+
| id | candidateId |
+----+-------------+
| 1  | 2           |
| 2  | 4           |
| 3  | 3           |
| 4  | 2           |
| 5  | 5           |
+----+-------------+
输出: 
+------+
| name |
+------+
| B    |
+------+
解释: 
候选人B有2票。候选人C、D、E各有1票。
获胜者是候选人B。

2.2 思路:

看注释,临时表连接。

2.3 题解:

-- 以candidateId分组,找到出现candidateId次数最多的candidateId
with tep as (select candidateIdfrom Votegroup by candidateId having count(*) >= all(select count(*)from Votegroup by candidateId)
)
-- 然后简单的表join找到name
select name
from Candidate c 
join tep t 
on c.id = t.candidateId

3. 力扣2314:每个城市最高温度的第一天

3.1 题目:

表: Weather

+-------------+------+
| Column Name | Type |
+-------------+------+
| city_id     | int  |
| day         | date |
| degree      | int  |
+-------------+------+
(city_id, day) 是该表的主键(具有唯一值的列的组合)。
该表中的每一行都包含某一天某个城市的天气程度。
所有的学位都是在 2022 年获得的。

编写解决方案,找出每个城市中有最高温度记录的日子。如果同一城市多次记录最高气温,则返回其中最早的一天。

返回按 city_id 升序排序 的结果表。

查询结果格式示例如下。

示例 1:

输入: 
Weather 表:
+---------+------------+--------+
| city_id | day        | degree |
+---------+------------+--------+
| 1       | 2022-01-07 | -12    |
| 1       | 2022-03-07 | 5      |
| 1       | 2022-07-07 | 24     |
| 2       | 2022-08-07 | 37     |
| 2       | 2022-08-17 | 37     |
| 3       | 2022-02-07 | -7     |
| 3       | 2022-12-07 | -6     |
+---------+------------+--------+
输出: 
+---------+------------+--------+
| city_id | day        | degree |
+---------+------------+--------+
| 1       | 2022-07-07 | 24     |
| 2       | 2022-08-07 | 37     |
| 3       | 2022-12-07 | -6     |
+---------+------------+--------+
解释: 
城市 1 的最高气温出现在 2022-07-07,为24度。
城市 2 的最高气温出现在 2022-08-07 和 2022-08-17,为37度。我们选择较早的日期 (2022-08-07)。
城市 3 的最高气温记录在 2022-12-07 年,为-6 度。

3.2 思路:

用常规方法子查询写超时了,然后发现可以用窗口函数写。

3.3 题解:

-- 使用窗口函数,city_id,然后剩下两个字段排序
-- 然后rank依次给窗口内的记录赋值
with tep as (select city_id, day, degree, rank() over (partition by city_id order by degree desc, day) cntfrom Weather
)
-- cnt为1的记录当然就是同一城市温度最高,日期最早的一天了
select city_id, day, degree
from tep
where cnt = 1
order by city_id

4. 力扣2298:周末任务计数

4.1 题目:

表: Tasks

+-------------+------+
| Column Name | Type |
+-------------+------+
| task_id     | int  |
| assignee_id | int  |
| submit_date | date |
+-------------+------+
task_id 是该表的主键(具有唯一值的列)。
此表中的每一行都包含任务 ID、委托人 ID 和提交日期。

编写一个解决方案来报告:

  • 在周末 (周六,周日) 提交的任务的数量 weekend_cnt,以及
  • 工作日内提交的任务数 working_cnt

按 任意顺序 返回结果表。
返回结果格式如以下示例所示。

示例 1:

输入: 
Tasks 表:
+---------+-------------+-------------+
| task_id | assignee_id | submit_date |
+---------+-------------+-------------+
| 1       | 1           | 2022-06-13  |
| 2       | 6           | 2022-06-14  |
| 3       | 6           | 2022-06-15  |
| 4       | 3           | 2022-06-18  |
| 5       | 5           | 2022-06-19  |
| 6       | 7           | 2022-06-19  |
+---------+-------------+-------------+
输出: 
+-------------+-------------+
| weekend_cnt | working_cnt |
+-------------+-------------+
| 3           | 3           |
+-------------+-------------+
解释: 
Task 1 是在周一提交的。
Task 2 是在周二提交的。
Task 3 是在周三提交的。
Task 4 是在周六提交的。
Task 5 是在周日提交的。
Task 6 是在周日提交的。
3 个任务是在周末提交的。
3 个任务是在工作日提交的。

4.2 思路:

没见过的日期函数,dayofweek()。

有意思的是星期天返回1, 星期六返回7

4.3 题解:

--学到了一手日期的函数:dayofweek:返回的是数字
-- 但需要注意的是:周日是1, 周六是7with tep1(working_cnt) as (select count(*) working_cntfrom Taskswhere dayofweek(submit_date) in (2, 3, 4, 5, 6)
), tep2(weekend_cnt) as (select count(*) weekend_cntfrom Taskswhere dayofweek(submit_date) in (7, 1)
)select weekend_cnt, working_cnt
from tep1, tep2

相关文章:

【力扣 | SQL题 | 每日四题】力扣534, 574, 2314, 2298

今天的每日四题比较简单,主要其中两题可以用窗口函数轻松解决。 1. 力扣534:游戏玩法分析3 1.1 题目: 表:Activity ----------------------- | Column Name | Type | ----------------------- | player_id | int | …...

Gitxray:一款基于GitHub REST API的网络安全工具

关于Gitxray Gitxray是一款基于GitHub REST API的网络安全工具,支持利用公共 GitHub REST API 进行OSINT、信息安全取证和安全检测等任务。 Gitxray(Git X-Ray 的缩写)是一款多功能安全工具,专为 GitHub 存储库而设计。它可以用于…...

Chrome(谷歌)浏览器 数据JSON格式美化 2024显示插件安装和使用

文章目录 目录 文章目录 安装流程 小结 概要安装流程技术细节小结 概要 没有美化的格式浏览器展示 美化之后效果图 安装流程 下载地址 https://github.com/gildas-lormeau/JSONVue 点击下载 下载成功,如图所示 解压文件 添加成功,如图所示 通过浏览器…...

关于相机的一些零碎知识点

热成像,英文为Thermal Imaging,例如型号500T,其实指的就是热成像500分辨率。 相机的CMOS,英文为Complementary Metal Oxide Semiconductor,是数码相机的核心成像部件,是一种互补金属氧化物导体器件。 DPI…...

看不懂来打我!让性能提升56%的Vue3.5响应式重构

前言 在Vue3.5版本中最大的改动就是响应式重构,重构后性能竟然炸裂的提升了56%。之所以重构后的响应式性能提升幅度有这么大,主要还是归功于:双向链表和版本计数。这篇文章我们来讲讲使用双向链表后,Vue内部是如何实现依赖收集和…...

Halcon 极坐标变换

(1)极坐标的展开:polar_trans_image_ext(Image : PolarTransImage : Row, Column, AngleStart, AngleEnd, RadiusStart, RadiusEnd, Width, Height, Interpolation : ) (2)极坐标的逆变换:polar_trans_ima…...

JavaScript进阶--深入面向对象

深入面向对象 编程思想 面向过程:多个步骤> 解决问题 性能较高,适合跟硬件联系很紧密的东西,如单片机 但代码维护成本高,扩展性差 面向对象:问题所需功能分解为一个一个的对象(分工合作)>…...

Python列表专题:list与in

Python是一种强大的编程语言,其中列表(list)是最常用的数据结构之一。列表允许我们存储多个元素,并且可以方便地进行各种操作。在Python中,in运算符被广泛用于检测元素是否存在于列表中。本文将深入探讨Python列表及其与in运算符的结合使用。 1. Python列表的基础 1.1 什…...

利用Microsoft Entra Application Proxy在无公网IP条件下安全访问内网计算机

在现代混合办公环境中,如何让员工能够从任何地方安全访问公司内部资源成为了企业的重要挑战。传统的VPN解决方案虽然可以满足需求,但有时配置复杂,并可能涉及公网IP的问题。为了解决这个问题,Microsoft Entra(原Azure …...

【IEEE独立出版 | 厦门大学主办】第四届人工智能、机器人和通信国际会议(ICAIRC 2024)

【IEEE独立出版 | 厦门大学主办】 第四届人工智能、机器人和通信国际会议(ICAIRC 2024) 2024 4th International Conference on Artificial Intelligence, Robotics, and Communication 2024年12月27-29日 | 中国厦门 >>往届均已成功见刊检索…...

C++ 内存布局 - Part5: 继承关系中 构造析构与vptr的调整

这里以单继承为例&#xff0c;汇编采用AT&T格式&#xff0c;先看示例代码&#xff1a; #include <iostream>class Base { public:Base() {std::cout << "Base Constructor, this ptr: " << this << std::endl;printVptr();}virtual ~Ba…...

BUG-AttributeError: ‘EnforcedForest‘ object has no attribute ‘node‘

File “/home/adt/miniconda3/envs/bevdet/lib/python3.7/site-packages/trimesh/scene/transforms.py”, line 224, in nodes_geometry ‘geometry’ in self.transforms.node[n]): AttributeError: ‘EnforcedForest’ object has no attribute ‘node’ networkx 2.6.3 pyp…...

Spring Boot 3 配置 Redis 兼容单例和集群

配置项 Spring Boot 3.x 的 redis 配置和 Spring Boot 2.x 是不一样的, 路径多了一个data spring:...data:redis:host: redis.hostport: redis.portpassword: redis.passworddatabase: redis.database兼容单例和集群的配置 开发时一般用一个Redis单例就足够, 测试和生产环境…...

unsat钱包签名算法解析

unsat钱包签名算法解析 在数字货币领域&#xff0c;安全性是至关重要的&#xff0c;而签名算法则是确保交易和信息不可伪造的基础。本文将深入解析 unsat 钱包中使用的签名算法&#xff0c;重点关注如何生成和验证消息签名。 1. 签名算法概述 unsat 钱包使用 ECDSA&#xff…...

mysql删除唯一索引

推荐学习文档 golang应用级os框架&#xff0c;欢迎stargolang应用级os框架使用案例&#xff0c;欢迎star案例&#xff1a;基于golang开发的一款超有个性的旅游计划app经历golang实战大纲golang优秀开发常用开源库汇总想学习更多golang知识&#xff0c;这里有免费的golang学习笔…...

学习之面试题:偏函数

偏函数&#xff08;Partial Function&#xff09;是 Python 中的一个实用工具&#xff0c;通常用于函数式编程中&#xff0c;可以固定一个函数的部分参数&#xff0c;从而生成一个新的函数。偏函数在 Python 中通常通过 functools.partial 实现。在面试中&#xff0c;考察偏函数…...

面试技术点

Java 一、jvm模块 jvm是什么? 是一用用于计算设备的规范,虚构出来的计算机,在计算机上仿真模拟各种计算机功能来实现 jvm 作用是什么? java中所有类必须装载jvm中才能运行,这个装载工作有jvm装载器完成,.class类型文件能在jvm虚拟器中运行,但不能直接在系统中运行,需要…...

基础sql

在执行删除操作之前&#xff0c;建议先运行一个 SELECT 查询来确认你要删除的记录。这可以帮助你避免误删数据。 删除字段id默认值为空字符串的所有数据 delete from users where id ; 删除字段id默认值为null的所有数据 delete from users where id is null; 删除字段upd…...

Jenkins整合Docker实现CICD自动化部署(若依项目)

前期准备 提前准备好jenkins环境 并且jenkins能使用docker命令&#xff0c;并且已经配置好了jdk、node、maven环境&#xff0c;我之前写了安装jenkins的博客&#xff0c;里面讲得比较详细&#xff0c;推荐用我这种方式安装 docker安装jenkins&#xff0c;并配置jdk、node和m…...

kali chrome 安装 hackbar

HackBar 是一个用于在 Kali Linux 中快速测试 SQL 注入和 XSS 漏洞的 Chrome 扩展程序。以下是如何在 Kali Linux 上安装 HackBar 的步骤&#xff1a; 首先&#xff0c;你需要确保你的系统已经安装了 Google Chrome 或 Chromium。如果没有安装&#xff0c;你可以使用以下命令安…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版​分享

平时用 iPhone 的时候&#xff0c;难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵&#xff0c;或者买了二手 iPhone 却被原来的 iCloud 账号锁住&#xff0c;这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用&#xff0c;因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型&#xff08;VLMs&#xff09;在字幕生成方面…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中&#xff0c;电磁频谱已成为继陆、海、空、天之后的 “第五维战场”&#xff0c;雷达作为电磁频谱领域的关键装备&#xff0c;其干扰与抗干扰能力的较量&#xff0c;直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器&#xff0c;凭借数字射…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

MySQL 8.0 事务全面讲解

以下是一个结合两次回答的 MySQL 8.0 事务全面讲解&#xff0c;涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容&#xff0c;并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念&#xff08;ACID&#xff09; 事务是…...