Flink时间窗口程序骨架结构
前言
Flink 作业的基本骨架结构包含三部分:创建执行环境、定义数据处理逻辑、提交并执行Flink作业。
日常大部分 Flink 作业是基于时间窗口计算模型的,同样的,开发一个Flink时间窗口作业也有一套基本的骨架结构,了解这套结构有助于我们更快地上手时间窗口作业开发。
窗口程序的基本骨架
一个Flink时间窗口作业的代码基本骨架如下所示:
stream.keyBy(...) <- 仅 keyed 窗口需要.window(...) <- 必填项:"assigner"[.trigger(...)] <- 可选项:"trigger" (省略则使用默认 trigger)[.evictor(...)] <- 可选项:"evictor" (省略则不使用 evictor)[.allowedLateness(...)] <- 可选项:"lateness" (省略则为 0)[.sideOutputLateData(...)] <- 可选项:"output tag" (省略则不对迟到数据使用 side output).reduce/aggregate/apply() <- 必填项:"function"[.getSideOutput(...)] <- 可选项:"output tag"
时间窗口作业对数据逻辑的处理,主要包含以下步骤:
- 对数据流进行分组,将DataStream装换为KeyedStream
- 指定窗口分配器 WindowAssigner,将数据划分到对应的窗口
- 指定窗口触发器 Trigger,决定了窗口何时关闭并计算
- 指定窗口移除器 Evictor,它可以在窗口计算前后对窗口内的数据进行移除
- allowedLateness 允许迟到的数据,事件时间语义下,即使事件时钟到达窗口关闭时间,窗口仍会保留一段时间以等待迟到的数据
- sideOutputLateData 针对窗口关闭后到达的迟到数据,可以将其输出到另外一条数据流,对计算结果做修正
- ProcessFunction 窗口内数据的处理函数
时间窗口作业实战
了解了时间窗口作业的基本骨架,以及相关组件的作用,接下来就实战一把。
如下示例程序,数据源每秒会生成2个一百以内的随机数,然后数据经过 keyBy 算子分组,这里为了简单,数据全部划分为一组,KeySelector 统一返回 “all”。
分组后,窗口分配器将数据划分到对应的窗口。这里基于处理时间语义,统一分配10秒大小的时间窗口,时间窗口被Flink封装为 TimeWindow 对象,包含两个属性,分别是起始时间戳和结束时间戳。
一旦有数据进入窗口,Trigger#onElement 就会触发,返回值决定了Flink如何处理窗口。显然我们的逻辑是时间到达窗口的结束时间,窗口就会触发计算并关闭,所以我们会注册一个 ProcessingTime 事件,窗口结束时间一到,Trigger#onProcessingTime 就会触发,窗口就会开始计算。
窗口计算前,还需要经过移除器Evictor。它有两个方法,分别在窗口计算前和计算后调用,在这里你可以根据条件移除窗口内无须计算的数据。示例程序中,把小于10的数移除掉了。
最终,窗口内的数据会交给 ProcessWindowFunction 处理,窗口内的数据被Flink封装成迭代器Iterable,通过它可以获得所有窗口内的数据。示例程序 中,我们所有元素打印出来并求和。
public class TimeWindowStructure {public static void main(String[] args) throws Exception {StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment();environment.addSource(new SourceFunction<Long>() {@Overridepublic void run(SourceContext<Long> sourceContext) throws Exception {while (true) {Threads.sleep(500);sourceContext.collect(ThreadLocalRandom.current().nextLong(100));}}@Overridepublic void cancel() {}}).keyBy(i -> "all")// 窗口分配器.window(new WindowAssigner<Long, TimeWindow>() {static final long WINDOW_SIZE = 10_000L;@Overridepublic Collection<TimeWindow> assignWindows(Long event, long timestamp, WindowAssignerContext windowAssignerContext) {// 把数据分配到对应的窗口,一条数据甚至可以分配到多个窗口// 这里根据处理时间 分配10秒大小的窗口final long processingTime = windowAssignerContext.getCurrentProcessingTime();long start = processingTime / WINDOW_SIZE * WINDOW_SIZE;long end = start + WINDOW_SIZE;return List.of(new TimeWindow(start, end));}@Overridepublic Trigger<Long, TimeWindow> getDefaultTrigger(StreamExecutionEnvironment streamExecutionEnvironment) {// 默认触发器,废弃了return null;}@Overridepublic TypeSerializer<TimeWindow> getWindowSerializer(ExecutionConfig executionConfig) {// 窗口序列化器return new TimeWindow.Serializer();}@Overridepublic boolean isEventTime() {// 是否基于事件时间语义return false;}})// 窗口触发器.trigger(new Trigger<Long, TimeWindow>() {private long max_register_processing_time = 0L;@Overridepublic TriggerResult onElement(Long element, long timestamp, TimeWindow timeWindow, TriggerContext triggerContext) throws Exception {// 每个元素进入窗口,都会触发该方法 返回结果决定了窗口是否计算或关闭// 我们是根据处理时间窗口结束时间来判断是否触发的,所以注册一个处理时间事件即可if (timeWindow.maxTimestamp() > max_register_processing_time) {max_register_processing_time = timeWindow.maxTimestamp();triggerContext.registerProcessingTimeTimer(max_register_processing_time);}return TriggerResult.CONTINUE;}@Overridepublic TriggerResult onProcessingTime(long l, TimeWindow timeWindow, TriggerContext triggerContext) throws Exception {// 窗口计算并清除数据return TriggerResult.FIRE_AND_PURGE;}@Overridepublic TriggerResult onEventTime(long l, TimeWindow timeWindow, TriggerContext triggerContext) throws Exception {return null;}@Overridepublic void clear(TimeWindow timeWindow, TriggerContext triggerContext) throws Exception {triggerContext.deleteProcessingTimeTimer(timeWindow.maxTimestamp());}})// 窗口移除器.evictor(new Evictor<Long, TimeWindow>() {@Overridepublic void evictBefore(Iterable<TimestampedValue<Long>> iterable, int i, TimeWindow timeWindow, EvictorContext evictorContext) {// 窗口计算前触发Iterator<TimestampedValue<Long>> iterator = iterable.iterator();while (iterator.hasNext()) {TimestampedValue<Long> next = iterator.next();Long value = next.getValue();if (value < 10) {iterator.remove();System.err.println("Evicted:" + value);}}}@Overridepublic void evictAfter(Iterable<TimestampedValue<Long>> iterable, int i, TimeWindow timeWindow, EvictorContext evictorContext) {// 窗口计算后触发}})// 因为是基于事件时间语义,不存在迟到数据,所以无须设置 allowedLateness、sideOutputLateData// 窗口处理函数.process(new ProcessWindowFunction<Long, String, String, TimeWindow>() {@Overridepublic void process(String group, ProcessWindowFunction<Long, String, String, TimeWindow>.Context context, Iterable<Long> iterable, Collector<String> collector) throws Exception {TimeWindow window = context.window();StringBuilder builder = new StringBuilder();builder.append("[" + window.getStart() + "-" + window.maxTimestamp() + "] elements:");Iterator<Long> iterator = iterable.iterator();Long sum = 0L;while (iterator.hasNext()) {Long value = iterator.next();sum += value;builder.append(value + " ");}builder.append(", sum:" + sum);System.err.println(builder.toString());}});environment.execute();}
}
运行Flink作业,控制台输出:
Evicted:3
Evicted:6
Evicted:1
[1722665800000-1722665809999] elements:89 17 16 57 94 47 67 98 , sum:485
Evicted:6
Evicted:4
[1722665810000-1722665819999] elements:86 50 71 95 36 10 55 43 96 36 28 87 89 50 53 35 63 95 , sum:1078
Evicted:4
Evicted:8
Evicted:0
[1722665820000-1722665829999] elements:85 20 42 86 46 20 32 45 91 59 57 64 31 67 78 71 28 , sum:922
尾巴
了解Flink时间窗口作业的基本骨架结构,理清Flink时间窗口的数据流转过程,有助于我们更快上手Flink时间窗口作业的开发。
Flink时间窗口作业包含的核心组件有:WindowAssigner、Window、Trigger、Evictor、ProcessWindowFunction。
相关文章:
Flink时间窗口程序骨架结构
前言 Flink 作业的基本骨架结构包含三部分:创建执行环境、定义数据处理逻辑、提交并执行Flink作业。 日常大部分 Flink 作业是基于时间窗口计算模型的,同样的,开发一个Flink时间窗口作业也有一套基本的骨架结构,了解这套结构有助…...

计算机视觉之可做什么
1、计算机视觉的应用 计算机视觉在我们生活中已经有了很广泛的应用,在我们可见、不可见;可感知、不可感知的地方,深深地影响了我们的生活、生产方式。 日常生活:美颜相机、火车站刷脸进站、线上办理业务的身份认证、自动驾驶等等…...

观察者模式的思考
观察者模式由来 观察者模式(Observer Pattern)是一种行为型设计模式,它的起源可以追溯到20世纪90年代初,由设计模式四人帮(Erich Gamma, Richard Helm, Ralph Johnson 和 John Vlissides)在其著作《设计模…...

ORACLE SELECT INTO 赋值为空,抛出 NO DATA FOUND 异常
例子: DECLARE ORDER_NUM VARCHAR2(20); BEGIN SELECT S.ORDER_NUM INTO ORDER_NUM FROM SALES_ORDER S WHERE S.ID122344; DBMS_OUTPUT.PUT_LINE(单号: || ORDER_NUM); END; 在查询结果为空的情况下,以上代码会报错:未找到任何数据 解决方…...
GPT提示词
参考 提示词大全: GPT提示词大全(中英文双语)持续更新 提示词.com...

Redis协议详解及其异步应用
目录 一、Redis Pipeline(管道)概述优点使用场景工作原理Pipeline 的基本操作步骤C 示例(使用 [hiredis](https://github.com/redis/hiredis) 库) 二、Redis 事务概述事务的前提事务特征(ACID 分析)WATCH 命…...
LeetCode213:打家劫舍II
题目链接:213. 打家劫舍 II - 力扣(LeetCode) 代码如下 class Solution { public:int rob(vector<int>& nums) {if(nums.size() 0) return 0;if(nums.size() 1) return nums[0];if(nums.size() 2) return max(nums[0…...

linux一二三章那些是重点呢
第一章 静态库动态库的区别 什么是库 库文件是计算机上的一类文件,可以简单的把库文件看成一种代码仓库,它提供给使用者一些可以直接 拿来用的变量、函数或类。 如何制作 静态动态库 静态库: GCC 进行链接时,会把静态库中代码打…...
C语言中的程序入口:超越main函数的探索
在C语言中,尽管main函数是标准程序的默认入口点,但借助编译器特性和链接器选项,我们可以指定其他函数作为程序的入口。GCC编译器通过-e选项,允许我们将任何符合签名的函数作为程序的入口。这一特性可以用于特定的实验需求、特定系…...
《面试之MQ篇》
《面试之MQ篇》 1. 为什么要使用MQ 首先,面试官问的第一个问题或者说是逼问的一个问题:“为什么要使用MQ”其实面试官问这个问题就是想考察你MQ的特性,这个时候呢,我们必须要答出三点:解耦、异步、削峰。 1. 解耦 1. 传统系统…...

Git 分支操作-开发规范
一、背景 在实际开发中,一般在主分支的基础上单独创建一个新的分支进行开发,最后合并到master分支,而不是直接在master分支进行开发。 二、新建分支 1、初始状态,local为本地分支,remote为远程分支 2、单击 “Remot…...
JSONArray根据指定字段去重
JSONArray dataList new JSONArray();这儿省略dataList 加数据的过程 dataList new JSONArray(dataList.stream().distinct().collect(Collectors.toList())); Set<String> timestamps new HashSet<>();根据时间字段去重 dataList dataList.stream().map(obj -…...
线程有哪几种状态? 分别说明从一种状态到另一种状态转变有哪些方式?
在 Java 中,线程的生命周期管理通过不同的状态来跟踪。一个线程在其生命周期中可以处于多种状态,不同的状态之间会通过特定的事件发生转变。以下是 Java 线程的几种状态及其之间的转移方式: 1. 线程的状态 1.1 NEW(新建状态&…...
自注意力机制self-attention中的KV 缓存
在自注意力机制中,KV 缓存(Key-Value Caching)主要用于加速模型在推理阶段的计算,尤其是在处理长序列或者生成任务(如文本生成)时,这种缓存机制可以显著提高效率。 1. KV 缓存的背景 在 Trans…...
前端库--nanoid(轻量级的uuid)
文章目录 定义:生成方式:现实使用:NanoID 只有 108 个字节那么大NanoID更安全NanoID它既快速又紧凑 使用步骤1.安装nanoid包2.引入使用3.使用4.自定义字母 定义: UUID 是 通用唯一识别码(Universally Unique Identifierÿ…...
计算机基础-什么是网络端口?
网络端口可以想象成一个大型公寓楼的邮箱。每个公寓楼(这里指的是一个计算机或服务器)有很多个邮箱(即网络端口),每个邮箱都有一个独一无二的编号(端口号)。当一封信(网络数据包&…...

力扣动态规划基础版(斐波那契类型)
70. 爬楼梯https://leetcode.cn/problems/climbing-stairs/ 70.爬楼梯 方法一 动态规划 考虑转移方程和边界条件: f(x) f(x -1) f(x - 2);f(1) 1;f&…...

Java重修笔记 InetAddress 类和 Socket 类
InetAddress 类相关方法 1. 获取本机 InetAddress 对象:getLocalHost public static InetAddress getLocalHost() throws UnknownHostException 返回值:本地主机的名字和地址 异常:UnknownHostException - 如果本地主机名无法解析成地址 2…...

秋招突击——8/6——万得数据面试总结
文章目录 引言正文面经整理一1、讲一下java的多态,重载,重写的概念,区别2、说一下Java的数组,链表的结构,优缺点3、创建java线程的方式有哪些,具体说说4、创建线程池呢、每个参数的意义5、通过那几种方式保…...

STM32定时器
目录 STM32定时器概述 STM32基本定时器 基本定时器的功能 STM32基本定时器的寄存器 STM32通用定时器 STM32定时器HAL库函数 STM32定时器概述 从本质上讲定时器就是“数字电路”课程中学过的计数器(Counter),它像“闹钟”一样忠实地为处…...

利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...

第19节 Node.js Express 框架
Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...

无法与IP建立连接,未能下载VSCode服务器
如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...