当前位置: 首页 > news >正文

R语言手工实现主成分分析 PCA | 奇异值分解(svd) 与PCA | PCA的疑问和解答

几个问题:

  • pca可以用相关系数矩阵做吗?效果比协方差矩阵比怎么样?
  • pca做完后变量和样本的新坐标怎么旋转获得?
  • pca做不做scale和center对结果有影响吗?
  • pca用因子分解和奇异值分解有啥区别?后者怎么获得变量和样本的新坐标?

1. 用R全手工实现 PCA(对比 prcomp() )

不借助包,按照 《机器学习实战》P246的伪代码进行操作.

1减去列平均数
2计算协方差矩阵
3计算协方差矩阵的特征值和特征向量
4将特征值从大到小排列
5保留最上面的N个特征值
6将数据转换到上述N个特征向量构建的新空间中。

例1: 针对iris数据集

head(iris)
df1=iris[,1:4]
#1) 减去平均值
df1=sweep(x=df1, MARGIN=2, STATS=apply(df1, 2, mean),FUN="-")
head(df1)
#2) 计算协方差矩阵
cor.df1=cov(df1)
#3) 计算协方差矩阵的特征值和特征向量
eigen.df1=eigen(cor.df1)
#4) 特征值默认降序
eigen.df1
#5) 保留最前面的几个特征值
#6) 原center后的坐标 * 旋转矩阵
coord.df1=as.matrix(df1) %*% eigen.df1$vectors
dim(coord.df1)
head(coord.df1)
# plot
coord.df1_=as.data.frame(coord.df1)
colnames(coord.df1_)=paste0("PC_", 1:4)
coord.df1_$type=iris$Species
library(ggplot2)
ggplot(coord.df1_, aes(PC_1, PC_2, color=type))+geom_point()# prcomp() 做PCA
pca.iris=prcomp(iris[,1:4])
pca.iris# 对比旋转矩阵
> pca.iris$rotation #prcomp()的计算结果PC1         PC2         PC3        PC4
Sepal.Length  0.36138659 -0.65658877  0.58202985  0.3154872
Sepal.Width  -0.08452251 -0.73016143 -0.59791083 -0.3197231
Petal.Length  0.85667061  0.17337266 -0.07623608 -0.4798390
Petal.Width   0.35828920  0.07548102 -0.54583143  0.7536574> eigen.df1$vectors #协方差矩阵的特征向量构成的矩阵[,1]        [,2]        [,3]       [,4]
[1,]  0.36138659 -0.65658877 -0.58202985  0.3154872
[2,] -0.08452251 -0.73016143  0.59791083 -0.3197231
[3,]  0.85667061  0.17337266  0.07623608 -0.4798390
[4,]  0.35828920  0.07548102  0.54583143  0.7536574# 对比方差
# 主成分的标准差,文档说是 协方差矩阵的特征值的平方根,虽然是通过SVD分解实现的
# square roots of the eigenvalues of the covariance/correlation matrix
# though the calculation is actually done with the singular values of the data matrix
> pca.iris$sdev
[1] 2.0562689 0.4926162 0.2796596 0.1543862> eigen.df1$values #特征根
[1] 4.22824171 0.24267075 0.07820950 0.02383509#开方后确实等于 pca.iris$sdev
> sqrt(eigen.df1$values)
[1] 2.0562689 0.4926162 0.2796596 0.1543862

相关文章:

R语言手工实现主成分分析 PCA | 奇异值分解(svd) 与PCA | PCA的疑问和解答

几个问题: pca可以用相关系数矩阵做吗?效果比协方差矩阵比怎么样?pca做完后变量和样本的新坐标怎么旋转获得?pca做不做scale和center对结果有影响吗?pca用因子分解和奇异值分解有啥区别?后者怎么获得变量和样本的新坐标?1. 用R全手工实现 PCA(对比 prcomp() ) 不借助包…...

第三届OpenHarmony技术大会在上海成功举办

10月12日,以“技术引领筑生态,万物智联创未来”为主题的第三届OpenHarmony技术大会(以下简称“大会”)在上海成功举办。本次大会由OpenAtom OpenHarmony(以下简称“OpenHarmony”)项目群技术指导委员会&…...

数字化:IT部门主导还是业务部门主导?

在这个瞬息万变的数字化时代,企业如同在大海中航行的小船,面对波涛汹涌的市场竞争,数字化转型已成为生存的必经之路。然而,在这条充满挑战的航线上,常常会出现一个让人纠结的问题:数字化转型究竟应该由IT部…...

MySQL表的基本查询下/分组聚合统计

1,update 对查询到的结果进行列值更新,可以和older by,where,limit合并使用,为了方便讲解,将会以题目练习的方式进行说明: 1,将孙悟空同学的数学成绩变更为 80 分 本道题和where联…...

条款3: 理解decltype

目录 一、decltype + 变量 二、decltype + 表达式 三、decltype 使用场景 一、decltype + 变量 🥭 所有的信息都会保留,数组和函数也不会退化 const int &&carref = std::move(ca); decltype(carref) bb; // bb推导为const int &&,不会被忽略掉co…...

TCP:过多的TIME_WAIT

过多的TIME_WAIT 线上问题紧急处理方式tcp_tw_reuse启用主要特点:源码 线上问题 线上机器出现了几万个TIME_WAIT,怎么办? 紧急处理方式 tcp_tw_reuse 启用 默认情况下tcp_tw_reuse是关闭状态,使用sysctl -w net.ipv4.tcp_tw_…...

化学元素分子量、氧化物系数计算python类

在网上找到的分子量计算类,做了少量修改,有原子量、分子量、氧化物系数的计算。 import re wt_dict{ #该原子量数据从CRC手册第95版提取。"H": 1.008,"He": 4.002602,"Li": 6.94,"Be": 9.0121831,"B": 10.…...

torch.utils.data.DataLoader参数介绍

torch.utils.data.DataLoader 是 PyTorch 用于加载数据的重要工具,特别是在深度学习模型训练中。它可以高效地处理大规模数据集,并支持多线程数据加载。以下是 DataLoader 的关键参数及其功能: 主要参数 dataset: 要加载的数据集,可以是 PyTorch 自带的 torch.utils.data.…...

echarts 入门

工作中第一次碰到echarts&#xff0c;当时有大哥。二进宫没办法&#xff0c;只能搞定它。 感觉生活就是这样&#xff0c;不能解决的问题总是会反复出现。通过看视频、查资料&#xff0c;完成了工作要求。写一篇Hello World&#xff0c;进行备查。 基本使用 快速上手 <!DO…...

WPF实现类似网易云音乐的菜单切换

这里是借助三方UI框架实现了&#xff0c;感兴趣的小伙伴可以看一下。 深色模式&#xff1a;​ 浅色模式&#xff1a; ​这里主要使用了以下三个包&#xff1a; MahApps.Metro&#xff1a;UI库&#xff0c;提供菜单导航和其它控件​​​​​​​ 实现步骤&#xff1a;1、使用B…...

OpenCV人脸检测与识别:构建智能识别系统

在当今科技日新月异的时代&#xff0c;人脸识别技术以其独特的便利性和安全性&#xff0c;在各个领域都展现出了巨大的应用潜力。从智能手机的面部解锁&#xff0c;到机场的自动安检&#xff0c;再到商场的顾客行为分析&#xff0c;人脸识别技术无处不在。本文将深入探讨如何使…...

H5 Canvas 举牌小人

之前看到这种的举牌小人的图片觉得很有意思&#xff0c;最近有时间所以就尝试写写看。 在线链接 https://linyisonger.github.io/H5.Examples/?name./080.Canvas%20%E4%B8%BE%E7%89%8C%E5%B0%8F%E4%BA%BA.html 生成效果 实现代码 <!DOCTYPE html> <html lang"…...

rom定制系列------小米6x_澎湃os1.0.28安卓13定制固件修改 刷写过程与界面预览

&#x1f49d;&#x1f49d;&#x1f49d; 在接待很多定制化系统过程中。小米6x机型为很多工作室客户使用。但官方低版本固件无法适应新应用的使用。有些第三方固件却可以完美解决。此固件是客户分享的卡刷固件。需要修改为可以批量刷写的线刷固件。去除一些内置应用。需要自带…...

电脑硬件性能:HDD + SSD + CPU + GPU

文章目录 任务管理器&#xff1a;性能参数详解一、电脑的硬件组成二、机械硬盘和固态硬盘2.1、详细介绍&#xff1a;HDD SSD2.2、读写性能2.2.1、&#xff08;HDD&#xff09;读写性能的影响因素&#xff1a;寻道时间 旋转延迟 数据传输时间2.2.2、&#xff08;SSD&#xff…...

通过粒子系统customData传值给材质球

粒子特效使用的材质球&#xff0c;如果通过动画控制shader的某个参数&#xff0c;例如溶解阈值&#xff0c;所有的粒子都会按照相同的数值变化&#xff0c;如果需要每个粒子在自己的生命周期内按照曲线变化&#xff0c;则可以通过customData实现。 1.ParticleSystem中勾选Cust…...

常用分布的数学期望、方差、特征函数

文章目录 相关教程相关文献常用分布的数学期望&方差&特征函数定义事件域概率条件概率随机变量分布函数连续随机变量的概率密度函数数学期望离散随机变量连续随机变量 方差与标准差最大似然估计特征函数 不等式Chebyshev&#xff08;切比雪夫&#xff09;不等式 作者&am…...

ssh-配置

生成 SSH 密钥是一项重要的安全措施&#xff0c;用于在客户端和服务器之间建立加密连接。以下是在 Windows 和 Linux 系统上生成 SSH 密钥的详细步骤。 一、在 Linux 上生成 SSH 密钥 Linux 通常预装了 ssh-keygen 工具&#xff0c;可以通过以下步骤生成 SSH 密钥&#xff1a…...

Python 在 JMeter 中如何使用?

要在JMeter中使用Python&#xff0c;需要使用JSR223 Sampler元素来执行Python脚本。使用JSR223 Sampler执行Python脚本时&#xff0c;需要确保已在JMeter中配置了Python解释器&#xff0c;并设置了正确的环境路径。 1、确保JMeter已安装Python解释器&#xff0c;并将解释器的路…...

贪心day1

文章目录 前言雪糕的最大数量重新分装苹果装满石头的背包的最大数量K 次取反后最大化的数组和不同整数的最少数目 前言 &#x1f4ab;你好&#xff0c;我是辰chen&#xff0c;本文旨在准备考研复试或就业 &#x1f4ab;文章题目大多来自于 leetcode&#xff0c;当然也可能来自洛…...

Redis 完整指南:命令与原理详解

目录 1. Redis 概述什么是 RedisRedis 应用场景 2. 安装与启动Redis 安装步骤源代码安装使用包管理器安装&#xff08;以 Ubuntu 为例&#xff09; 编译与启动命令编客户端连接 3. Redis 存储结构KV 存储结构数据结构类型String&#xff08;字符串&#xff09;List&#xff08;…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来&#xff0c;实在找不到&#xff0c;希望有大佬教一下我。 还有就会议时间&#xff0c;我感觉不是图片时间&#xff0c;因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 &#x1f4dd; 在上一篇文章中&#xff0c;我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源&#xff0c;方便后续将资源打包到一个可执行文件中。 2.embed介绍 &#x1f3af; Go 1.16 引入了革命性的 embed 包&#xff0c;彻底改变了静态资源管理的…...

day36-多路IO复用

一、基本概念 &#xff08;服务器多客户端模型&#xff09; 定义&#xff1a;单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用&#xff1a;应用程序通常需要处理来自多条事件流中的事件&#xff0c;比如我现在用的电脑&#xff0c;需要同时处理键盘鼠标…...

C语言中提供的第三方库之哈希表实现

一. 简介 前面一篇文章简单学习了C语言中第三方库&#xff08;uthash库&#xff09;提供对哈希表的操作&#xff0c;文章如下&#xff1a; C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...

通过MicroSip配置自己的freeswitch服务器进行调试记录

之前用docker安装的freeswitch的&#xff0c;启动是正常的&#xff0c; 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...

VisualXML全新升级 | 新增数据库编辑功能

VisualXML是一个功能强大的网络总线设计工具&#xff0c;专注于简化汽车电子系统中复杂的网络数据设计操作。它支持多种主流总线网络格式的数据编辑&#xff08;如DBC、LDF、ARXML、HEX等&#xff09;&#xff0c;并能够基于Excel表格的方式生成和转换多种数据库文件。由此&…...