当前位置: 首页 > news >正文

MOE论文详解(4)-GLaM

2022年google在GShard之后发表另一篇跟MoE相关的paper, 论文名为GLaM (Generalist Language Model), 最大的GLaM模型有1.2 trillion参数, 比GPT-3大7倍, 但成本只有GPT-3的1/3, 同时效果也超过GPT-3. 以下是两者的对比:

在这里插入图片描述

跟之前模型对比如下, 跟GShard和Switch-C相比, GLaM是第一个MoE在Decoder-only模型上的应用. (整体变化其实不大)

在这里插入图片描述

1. 训练数据

GLaM模型使用开源的1.6万亿(trillion)个token进行训练, 下图说明了训练数据的种类与混合比例:

在这里插入图片描述

2. 模型结构

整体模型结构跟GShard类似, 如下图所示, 总共有64个expert, 门控网络每次从中选择2个expert进行计算. 另外还有几点改动:

  • 使用relative positional bias(From Transformer-XL) 替换标准的position embedding
  • 在非MoE Transformer层, 使用Gated Linear Unit(GLU)Gaussian Error Linear Unit(GeLU)激活来替换第一个线性层和激活.
  • GLaM模型训练中权重和计算的切分使用2维的切分算法(From GSPMD).
    • 把不同MoE layer上相同位置(具有相同的index值)的专家放到同一个device设备上, 使得不同的MoE layer得到相同的计算图
    • 使用while_loop控制语句wrap重复性的MoE layer
    • 要使得模型效果好, expert要足够大. 如果一个expert足够大时一个expert就对应多个core来分配, 也就是一个expert对应 N E \frac{N}{E} EN 个device. expert的权重shape为 [ E , M , H ] [E, M, H] [E,M,H], 按专家维度 E E E 和hidden维度 H H H 来切分; input activation tensor 的shape大小为 [ B , S , M ] [B, S, M] [B,S,M], 按 batch维度 B B B 和 model维度 M M M 来进行切分.
    • 同时也依赖GSPMD的编译pass过程来决定剩下tensor的切分策略

在这里插入图片描述

3. 结果

GPT-3与GLaM的比较如下, 分别在zero-shot, one-shot, few-shot等多个方面进行了比较, 效果比GPT-3要好

在这里插入图片描述

4. 参考

  • GLaM
  • MOE论文详解(4)-GLaM

相关文章:

MOE论文详解(4)-GLaM

2022年google在GShard之后发表另一篇跟MoE相关的paper, 论文名为GLaM (Generalist Language Model), 最大的GLaM模型有1.2 trillion参数, 比GPT-3大7倍, 但成本只有GPT-3的1/3, 同时效果也超过GPT-3. 以下是两者的对比: 跟之前模型对比如下, 跟GShard和Switch-C相比, GLaM是第一…...

LeetCode322:零钱兑换

题目链接&#xff1a;322. 零钱兑换 - 力扣&#xff08;LeetCode&#xff09; 代码如下 class Solution { public:int coinChange(vector<int>& coins, int amount) {vector<int> dp(amount 1, INT_MAX);dp[0] 0;for(int i 0; i < coins.size(); i){fo…...

速盾:高防 cdn 提供 cc 防护?

在当今网络环境中&#xff0c;网站面临着各种安全威胁&#xff0c;其中 CC&#xff08;Challenge Collapsar&#xff09;攻击是一种常见的分布式拒绝服务攻击方式。高防 CDN&#xff08;Content Delivery Network&#xff0c;内容分发网络&#xff09;作为一种有效的网络安全防…...

【大数据应用开发】2023年全国职业院校技能大赛赛题第10套

如有需要备赛资料和远程培训,可私博主,详细了解 目录 任务A:大数据平台搭建(容器环境)(15分) 任务B:离线数据处理(25分) 任务C:数据挖掘(10分) 任务D:数据采集与实时计算(20分) 任务E:数据可视化(15分) 任务F:综合分析(10分) 任务A:大数据平台搭…...

【源码部署】解决SpringBoot无法加载yml文件配置,总是使用8080端口方案

打开idea&#xff0c;file ->Project Structure 找到Modules &#xff0c;在右侧找到resource目录&#xff0c;是否指定了resource&#xff0c;点击对应文件夹会有提示...

2010年国赛高教杯数学建模B题上海世博会影响力的定量评估解题全过程文档及程序

2010年国赛高教杯数学建模 B题 上海世博会影响力的定量评估 2010年上海世博会是首次在中国举办的世界博览会。从1851年伦敦的“万国工业博览会”开始&#xff0c;世博会正日益成为各国人民交流历史文化、展示科技成果、体现合作精神、展望未来发展等的重要舞台。请你们选择感兴…...

使用nginx配置静态页面展示

文章目录 前言正文安装nginx配置 前言 目前有一系列html文件&#xff0c;比如sphinx通过make html输出的文件&#xff0c;需要通过ip远程访问&#xff0c;这就需要ngnix 主要内容参考&#xff1a;https://blog.csdn.net/qq_32460819/article/details/121131062 主要针对在do…...

[IOI2018] werewolf 狼人(Kruskal重构树 + 主席树)

https://www.luogu.com.cn/problem/P4899 首先&#xff0c;我们肯定要建两棵Kruskal重构树的&#xff0c;然后判两棵子树是否有相同编号节点 这是个经典问题&#xff0c;我们首先可以拍成dfs序&#xff0c;然后映射过去&#xff0c;然后相当于是判断一个区间是否有 [ l , r …...

snmpgetnext使用说明

1.snmpgetnext介绍 snmpgetnext命令是用来获取下一个节点的OID的值。 2.snmpgetnext安装 1.snmpgetnext安装 命令: yum -y install net-snmp net-snmp-utils [root@logstash ~]# yum -y install net-snmp net-snmp-utils Loaded plugins: fastestmirror Loading mirror …...

frameworks 之 触摸事件窗口查找

frameworks 之 触摸事件窗口查找 1. 初始化数据2. 查找窗口3. 分屏处理4. 检查对应的权限5.是否需要将事件传递给壁纸界面6. 成功处理 触摸流程中最重要的流程之一就是查找需要传递输入事件的窗口&#xff0c;并将触摸事件传递下去。 涉及到的类如下 frameworks/native/service…...

memset的用法

memset 是 C 语言标准库中的一个函数&#xff0c;用于将一块内存区域设置为特定的值。它的原型如下&#xff1a; c void *memset(void *s, int c, size_t n); - s 参数是要被填充的内存块的起始地址。 - c 参数是要填充的值。这个值会被转换为无符号字符&#xff0c;然后用来…...

阿里云国际站DDoS高防增值服务怎么样?

利用国外服务器建站的话&#xff0c;选择就具有多样性了&#xff0c;相较于我们常见的阿里云和腾讯云&#xff0c;国外的大厂商还有谷歌云&#xff0c;微软云&#xff0c;亚马逊云等&#xff0c;但是较之这些&#xff0c;同等产品进行比较的话&#xff0c;阿里云可以说当之无愧…...

open-cd中的changerformer网络结构分析

open-cd 目录 open-cd1.安装2.源码结构分析主干网络1.1 主干网络类2.neck2.Decoder3.测试模型6. changer主干网络 总结 该开源库基于&#xff1a; mmcv mmseg mmdet mmengine 1.安装 在安装过程中遇到的问题&#xff1a; 1.pytorch版本问题&#xff0c;open-cd采用的mmcv版本比…...

太速科技-426-基于XC7Z100+TMS320C6678的图像处理板卡

基于XC7Z100TMS320C6678的图像处理板卡 一、板卡概述 板卡基于独立的结构&#xff0c;实现ZYNQ XC7Z100DSP TMS320C6678的多路图像输入输出接口的综合图像处理&#xff0c;包含1路Camera link输入输出、1路HD-SDI输入输出、1路复合视频输入输出、2路光纤等视频接口&#xff0c;…...

asp.net Core 自定义中间件

内联中间件 中间件转移到类中 推荐中间件通过IApplicationBuilder 公开中间件 使用扩展方法 调用中间件 含有依赖项的 》》》中间件 参考资料...

掌握 C# 设计模式:从基础到依赖注入

设计模式是一种可以在开发中重复使用的解决方案&#xff0c;能够提高代码的可维护性、扩展性和复用性。C# 中常见的设计模式包括单例模式、工厂模式、观察者模式、策略模式等。本文将介绍这些常见的设计模式&#xff0c;并探讨 SOLID 原则和依赖注入&#xff08;Dependency Inj…...

根据json转HttpClient脚本

String json “{\n” " “paths”: {\n" " “/dev-api/system/subjectResult/exportUserList”: {\n" " “post”: {\n" " “tags”: [\n" " “bd-subject-result-controller”\n" " ],\n" " “summ…...

如何将LiDAR坐标系下的3D点投影到相机2D图像上

将激光雷达点云投影到相机图像上做数据层的前融合&#xff0c;或者把激光雷达坐标系下标注的物体点云的3d bbox投影到相机图像上画出来&#xff0c;都需要做点云3D点坐标到图像像素坐标的转换计算&#xff0c;也就是LiDAR 3D坐标转像素坐标。 看了网上一些文章都存在有错误或者…...

JAVA就业笔记6——第二阶段(3)

课程须知 A类知识&#xff1a;工作和面试常用&#xff0c;代码必须要手敲&#xff0c;需要掌握。 B类知识&#xff1a;面试会问道&#xff0c;工作不常用&#xff0c;代码不需要手敲&#xff0c;理解能正确表达即可。 C类知识&#xff1a;工作和面试不常用&#xff0c;代码不…...

02.04、分割链表

02.04、[中等] 分割链表 1、题目描述 给你一个链表的头节点 head 和一个特定值 x &#xff0c;请你对链表进行分隔&#xff0c;使得所有 小于 x 的节点都出现在 大于或等于 x 的节点之前。 你不需要 保留 每个分区中各节点的初始相对位置。 2、解题思路 本题要求将链表分隔…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

工程地质软件市场:发展现状、趋势与策略建议

一、引言 在工程建设领域&#xff0c;准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具&#xff0c;正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来&#xff0c;实在找不到&#xff0c;希望有大佬教一下我。 还有就会议时间&#xff0c;我感觉不是图片时间&#xff0c;因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

关于 WASM:1. WASM 基础原理

一、WASM 简介 1.1 WebAssembly 是什么&#xff1f; WebAssembly&#xff08;WASM&#xff09; 是一种能在现代浏览器中高效运行的二进制指令格式&#xff0c;它不是传统的编程语言&#xff0c;而是一种 低级字节码格式&#xff0c;可由高级语言&#xff08;如 C、C、Rust&am…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能&#xff1a;服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...

日常一水C

多态 言简意赅&#xff1a;就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过&#xff0c;当子类和父类的函数名相同时&#xff0c;会隐藏父类的同名函数转而调用子类的同名函数&#xff0c;如果要调用父类的同名函数&#xff0c;那么就需要对父类进行引用&#…...

6️⃣Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙

Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙 一、前言:离区块链还有多远? 区块链听起来可能遥不可及,似乎是只有密码学专家和资深工程师才能涉足的领域。但事实上,构建一个区块链的核心并不复杂,尤其当你已经掌握了一门系统编程语言,比如 Go。 要真正理解区…...

如何做好一份技术文档?从规划到实践的完整指南

如何做好一份技术文档&#xff1f;从规划到实践的完整指南 &#x1f31f; 嗨&#xff0c;我是IRpickstars&#xff01; &#x1f30c; 总有一行代码&#xff0c;能点亮万千星辰。 &#x1f50d; 在技术的宇宙中&#xff0c;我愿做永不停歇的探索者。 ✨ 用代码丈量世界&…...