当前位置: 首页 > news >正文

一区鱼鹰优化算法+深度学习+注意力机制!OOA-TCN-LSTM-Attention多变量时间序列预测

一区鱼鹰优化算法+深度学习+注意力机制!OOA-TCN-LSTM-Attention多变量时间序列预测

目录

    • 一区鱼鹰优化算法+深度学习+注意力机制!OOA-TCN-LSTM-Attention多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述

基本介绍

1.基于OOA-TCN-LSTM-Attention的鱼鹰算法优化时间卷积长短期记忆神经网络融合注意力机制多变量时间序列预测,要求Matlab2023版以上,自注意力机制,一键单头注意力机制替换成多头注意力机制;
2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;
3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;
5.优化学习率,神经元个数,注意力机制的键值,正则化参数。

程序设计

  • 完整源码和数据获取方式私信博主回复Matlab实现一区鱼鹰优化算法+深度学习+注意力机制!OOA-TCN-LSTM-Attention多变量时间序列预测
clc;
clear 
close allX = xlsread('data.xlsx');
num_samples = length(X);                            % 样本个数 
kim = 6;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测
or_dim = size(X,2);%  重构数据集
for i = 1: num_samples - kim - zim + 1res(i, :) = [reshape(X(i: i + kim - 1,:), 1, kim*or_dim), X(i + kim + zim - 1,:)];
end% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.9;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%  格式转换
for i = 1 : M vp_train{i, 1} = p_train(:, i);vt_train{i, 1} = t_train(:, i);
endfor i = 1 : N vp_test{i, 1} = p_test(:, i);vt_test{i, 1} = t_test(:, i);
end%% 优化算法优化前,构建优化前的TCN_BiGRU_Attention模型outputSize = 1;  %数据输出y的维度  
numFilters = 64;
filterSize = 5;
dropoutFactor = 0.1;
numBlocks = 2;layer = sequenceInputLayer(f_,Normalization="rescale-symmetric",Name="input");
lgraph = layerGraph(layer);     convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal")layerNormalizationLayerreluLayerdropoutLayer(dropoutFactor) additionLayer(2,Name="add_"+i)];% Add and connect layers.lgraph = addLayers(lgraph,layers);lgraph = connectLayers(lgraph,outputName,"conv1_"+i);% Skip connection.if i == 1% Include convolution in first skip connection.layer = convolution1dLayer(1,numFilters,Name="convSkip");lgraph = addLayers(lgraph,layer);lgraph = connectLayers(lgraph,outputName,"convSkip");lgraph = connectLayers(lgraph,"convSkip","add_" + i + "/in2");elselgraph = connectLayers(lgraph,outputName,"add_" + i + "/in2");end% Update layer output name.outputName = "add_" + i;
endtempLayers = gruLayer(NumNeurons,"Name","gru1");
lgraph = addLayers(lgraph,tempLayers);tempLayers = [FlipLayer("flip3")gruLayer(NumNeurons,"Name","gru2")];
lgraph = addLayers(lgraph,tempLayers);tempLayers = [concatenationLayer(1,2,"Name","concat")

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关文章:

一区鱼鹰优化算法+深度学习+注意力机制!OOA-TCN-LSTM-Attention多变量时间序列预测

一区鱼鹰优化算法深度学习注意力机制!OOA-TCN-LSTM-Attention多变量时间序列预测 目录 一区鱼鹰优化算法深度学习注意力机制!OOA-TCN-LSTM-Attention多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.基于OOA-TCN-LSTM-Attenti…...

Cesium 黑夜效果

Cesium 黑夜效果 原理: 根据相机到片元的距离雾化场景的后处理效果 效果:...

leetcode动态规划(二)-斐波那契数列

题目 509.斐波那契数列 斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) 0,F(1) 1 F(n) F(n - 1) F(n - 2)&#xff0…...

【MySQL】增删改查-进阶(一)

目录 🌴数据库约束 🚩约束类型 🚩NOT NULL 🚩UNIQUE 🚩DEFAULT 🚩PRIMARY KEY 🚩FOREIGN KEY 🚩CHECK 🎄表的设计 🚩一对一 🚩一对多 …...

MacOS RocketMQ安装

MacOS RocketMQ安装 文章目录 MacOS RocketMQ安装一、下载二、安装修改JVM参数启动关闭测试关闭测试测试收发消息运行自带的生产者测试类运行自带的消费者测试类参考博客:https://blog.csdn.net/zhiyikeji/article/details/140911649 一、下载 打开官网,…...

OpenCV高级图形用户界面(6)获取指定窗口中图像的矩形区域函数getWindowImageRect()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 提供窗口中图像的矩形区域。 该函数 getWindowImageRect 返回图像渲染区域的客户端屏幕坐标、宽度和高度。 函数原型 Rect cv::getWindowImage…...

SpringColoud GateWay 核心组件

优质博文:IT-BLOG-CN 【1】Route路由: Gateway的基本构建模块,它由ID、目标URL、断言集合和过滤器集合组成。如果聚合断言结果为真,则匹配到该路由。 Route路由-动态路由实现原理: 配置变化Apollo 服务地址实例变化…...

5.计算机网络_抓包工具wireshark

安装 Linux中安装wireshark: sudo apt-get install wireshark Linux中执行wireshark: sudo wireshark 使用 注意:只有与外网交互的数据才可以被wireshark抓到,本机回环的数据不会被抓到 实验内容: 使用nc命令…...

基于Java的车辆管理系统的设计与实现-计算机毕业设计源码41727

摘要 信息化社会内需要与之针对性的信息获取途径,但是途径的扩展基本上为人们所努力的方向,由于站在的角度存在偏差,人们经常能够获得不同类型信息,这也是技术最为难以攻克的课题。针对车辆管理系统等问题,对车辆管理…...

在软件开发中低耦合和高内聚是什么,如何实现,请看文章

软件开发中,“低耦合”和“高内聚”是设计原则,用于提高系统的可维护性、可扩展性和可重用性。下面我会详细解释这两个概念及其带来的好处和规避的坏处。 低耦合(Low Coupling) 定义: 低耦合指的是模块之间的依赖关系…...

关于MyBatis-Plus 提供Wrappers.lambdaQuery()的方法

实例&#xff1a; private LambdaQueryWrapper<XXX> buildQueryWrapper(XXXBo bo) { Map<String, Object> params bo.getParams(); LambdaQueryWrapper<XXX> lqw Wrappers.lambdaQuery(); lqw.eq(bo.getOrgId() ! null, XXX::getOrgId, bo.getOrgId()); lq…...

C++——vector的了解与使用

目录 引言 vector容器的基本概念 1.功能 2.动态大小 3.动态扩展 vector的接口 1.vector的迭代器 2.vector的初始化与销毁 3.vector的容量操作 3.1 有效长度和容量大小 (1)使用示例 (2)扩容机制 3.2 有效长度和容量操作 (1)reserve (2)resize 4.vector的访问操作…...

Ubuntu设置静态IP地址

Ubuntu如果是最小安装&#xff0c;没有图形界面&#xff0c;需要配置静态IP&#xff0c;该怎么操作呢&#xff1f; Netplan 是最新版 Ubuntu 的默认网络管理工具。Netplan 的配置文件使用 YAML 编写&#xff0c;扩展名为 .yaml。 注意&#xff1a;配置文件中的空格是语法的一部…...

力扣349.两个数组的交集

题目链接&#xff1a;349. 两个数组的交集 - 力扣&#xff08;LeetCode&#xff09; 给定两个数组 nums1 和 nums2 &#xff0c;返回 它们的 交集。输出结果中的每个元素一定是 唯一 的。我们可以 不考虑输出结果的顺序 。 示例 1&#xff1a; 输入&#xff1a;nums1 [1,2,…...

FreeRTOS - 软件定时器

在学习FreeRTOS过程中&#xff0c;结合韦东山-FreeRTOS手册和视频、野火-FreeRTOS内核实现与应用开发、及网上查找的其他资源&#xff0c;整理了该篇文章。如有内容理解不正确之处&#xff0c;欢迎大家指出&#xff0c;共同进步。 1. 软件定时器 软件定时器也可以完成两类事情…...

Python的Atlassian第三方库的详细介绍

atlassian-python-api 是一个用于与 Atlassian 生态系统进行交互的 Python 库&#xff0c;支持与多种 Atlassian 工具&#xff08;如 Jira、Confluence、Bitbucket 等&#xff09;进行 API 调用。它简化了 REST API 的调用&#xff0c;提供了高层次的抽象&#xff0c;方便开发者…...

Java中的基本循环结构详解

在Java编程中&#xff0c;循环是控制流的重要组成部分&#xff0c;用于重复执行一段代码。Java提供了三种基本的循环结构&#xff1a;for循环、while循环和do-while循环。本文将详细介绍这三种循环的语法和使用场景&#xff0c;并通过示例代码展示其应用。 一&#xff0c;for …...

关于Git Bash中如何定义alias

一、在一次临时Bash会话中使用alias 在Bash中直接输入alias xxdddd&#xff0c;xx为对应要执行的命令的缩写&#xff0c;dddd为要执行的命令&#xff0c;如alias ddcd /d&#xff0c;输入完成后&#xff0c;在Bash中输入dd&#xff0c;即可切换至D盘。 此种设置方式&#xff…...

luckfox1106初次使用

luckfox1106初次使用 下载rk驱动 https://files.luckfox.com/wiki/Luckfox-Pico/Software/DriverAssitant_v5.12.zip 安装驱动 SD 卡烧录工具 https://files.luckfox.com/wiki/Luckfox-Pico/Software/SocToolKit_v1.98_20240705_01_win.zip 右键以管理员方式运行...

ab命令深入解析:ApacheBench性能测试工具

软考鸭微信小程序 学软考,来软考鸭! 提供软考免费软考讲解视频、题库、软考试题、软考模考、软考查分、软考咨询等服务 引言 在Web开发和运维领域&#xff0c;性能测试是评估服务器和应用性能的重要手段。ApacheBench&#xff08;简称ab&#xff09;是Apache HTTP服务器自带的…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

Android Wi-Fi 连接失败日志分析

1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分&#xff1a; 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析&#xff1a; CTR…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能&#xff1a;服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

【JVM】Java虚拟机(二)——垃圾回收

目录 一、如何判断对象可以回收 &#xff08;一&#xff09;引用计数法 &#xff08;二&#xff09;可达性分析算法 二、垃圾回收算法 &#xff08;一&#xff09;标记清除 &#xff08;二&#xff09;标记整理 &#xff08;三&#xff09;复制 &#xff08;四&#xff…...

人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型

在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重&#xff0c;适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解&#xff0c;并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...

图解JavaScript原型:原型链及其分析 | JavaScript图解

​​ 忽略该图的细节&#xff08;如内存地址值没有用二进制&#xff09; 以下是对该图进一步的理解和总结 1. JS 对象概念的辨析 对象是什么&#xff1a;保存在堆中一块区域&#xff0c;同时在栈中有一块区域保存其在堆中的地址&#xff08;也就是我们通常说的该变量指向谁&…...